Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Polymer nanocarbon materials as ion-to-electron transducers in solid-contact ion-selective electrodes

https://doi.org/10.17586/2220-8054-2022-13-6-688-697

Abstract

High-lignin content cellulose nanofibrils (LCNF) were successfully prepared from thermomechanical pulp through TEMPO-catalyzed oxidation, followed by ultrasonic treatment. Preparation protocols of the LCNFs included use of the mild pre-hydrolysis of the thermomechanical pulp and adjustment of sodium hypochlorite loading for the samples with the 23.8 and 14.1 wt.% lignin content, resulting in the increase of the carboxyl group content from 0.70 to 1.24 mmol/g. LCNFs had a diameter of 14 5 nm (AFM evaluation); and the LCNF morphology was affected by contents of both lignin and carboxyl groups. The translucent LCNF films were prepared by solution casting technique. They exhibited the heightened water contact angle of 75-82 °, an increased thermal stability up to 275 °C compared to lignin-free cellulose nanofibril films (39 ° and 203 °C, respectively), and excellent UV-blocking ability in a wide spectrum range from 200 to 375 nm. The said LCNFs can be successfully used for manufacturing the packaging materials and/or making the biopolymer composites.

About the Authors

K. Yu. Zhizhin
N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation


E. S. Turyshev
N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation


A. V. Kopytin
N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation


L. K. Shpigun
N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation


N. T. Kuznetsov
N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation


N. P. Simonenko
N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation


N. N. Zamyatina
N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation


M. S. Madraimov
N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation


G. I. Betenev
N. S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation


References

1. Shao Y., Ying Y., Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and develop- ment trends. Chem. Soc. Rev., 2020, 49(13), P. 4405-4465.

2. Nikolskii B.P., Materova E.A. Solid contact in membrane ion-selective electrodes. Leningrad, 1985, 39 pp.

3. Zhang Y., Tang Y., Liang R., Zhong L., Xu J., Lu H., Xu X., Han T., Bao Y., Ma Y., et al. Carbon-based transducers for solid-contact calcium ion-selective electrodes: mesopore and nitrogen-doping effects. Membranes, 2022, 12(9), P. 12090903.

4. Du¨zgu¨n A., Zelada-Guille´n G.A., Crespo G.A., Macho S., Riu J., Rius F.X. Nanostructured materials in potentiometry. Anal. Bioanal. Chem., 2011, 399(1), P. 171-181.

5. Yin T., Qin W. Applications of nanomaterials in potentiometric sensors. Trends Anal. Chem., 2013, 51, P. 79-86.

6. Bieg C., Fuchsberger K., Stelzle M.Introduction to polymer-based solid-contact ion-selective electrodes-basic concepts, practical considerations, and current research topics. Anal. Bioanal. Chem., 2017, 409(1), P. 45-61.

7. Huang M.-R., Li X.-G. Highly sensing and transducing materials for potentiometric ion sensors with versatile applicability. Prog. Mater. Sci., 2022, 125, P. 100885.

8. Fibbioli M., Morf W.E., Badertscher M., Rooij N.F. de, Pretsch E. Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis, 2000, 12(16), P. 1286-1292.

9. Birinci A., Eren H., Coldur F., Coskun E., Andac M. Rapid determination of trace level copper in tea infusion samples by solid contact ion-selective electrode. J. Food Drug. Anal., 2016, 24(3), P. 485-492.

10. Liu Y., Liu Y., Gao Y., Wang P. A general approach to one-step fabrication of single-piece nanocomposite membrane based Pb2+-selective electrodes. Sens. Actuator B Chem., 2019, 281, P. 705-712.

11. Papp S., Kozma J., Lindfors T., Gyurcsa´nyi R.E. Lipophilic multi-walled carbon nanotube-based solid contact potassium ion-selective electrodes with reproducible standard potentials. A comparative study. Electroanalysis, 2020, 32(4), P. 867-873.

12. Crespo G.A., Macho S., Bobacka J., Rius F.X. Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes. Anal. Chem., 2009, 81, P. 676-681.

13. Cuartero M., Bishop J., Walker R., Acres R.G., Bakker E., Marco R.De, et al. Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes. Chem.Commun., 2016, 52(62), P. 9703-9706.

14. Cheong Y.H., Ge L., Lisak G. Highly reproducible solid contact ion selective electrodes: Emerging opportunities for potentiometry - A review. Anal. Chim. Acta, 2021, 1162, P. 338304.

15. Gadhari N.S., Gholave J.V., Patil S.S., Patil V.R., Upadhyay S.S. Enantioselective high performance new solid contact ion-selective electrode potentiometric sensor based on sulphated γ-cyclodextrin-carbon nanofiber composite for determination of multichiral drug moxifloxacin. J. Electroanal. Chem., 2021, 882, P. 114981.

16. Bobacka J., Ivaska A., Lewenstam A. Potentiometric ion sensors. Chem. Rev., 2008, 108(2), P. 329-351.

17. Paczosa-Bator B. Ion-selective electrodes with superhydrophobic polymer/carbon nanocomposites as solid contact. Carbon N Y, 2015, 95, P. 879- 887.

18. Piek M., Piech R., Paczosa-Bator B. All-solid-state nitrate selective electrode with graphene/tetrathiafulvalene nanocomposite as high redox and double layer capacitance solid contact. Electrochim. Acta, 2016, 210, P. 407-414.

19. Kałuza D., Jaworska E., Mazur M., Maksymiuk K., Michalska A. Multiwalled carbon nanotubes-poly (3-octylthiophene-2, 5-diyl) nanocomposite transducer for ion-selective electrodes: Raman spectroscopy insight into the transducer membrane interface. Anal. Chem., 2019, 91(14), P. 9010- 9017.

20. Mousavi Z., Bobacka J., Lewenstam A., Ivaska A. Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes. J. Electroanal. Chem., 2009, 633(1), P. 246-252.

21. Szu˝cs J., Lindfors T., Bobacka J., Gyurcsa´nyi R.E. Ion-selective electrodes with 3D nanostructured conducting polymer solid contact. Electroanal- ysis, 2016, 28(4), P. 778-786.

22. Boeva Z.A., Lindfors T. Few-layer graphene and polyaniline composite as ion-to-electron transducer in silicone rubber solid-contact ion-selective electrodes. Sens. Actuators B Chem., 2016, 224, P. 624-631.

23. Ardalani M., Shamsipur M., Besharati-Seidani A. A new generation of highly sensitive potentiometric sensors based on ion imprinted polymeric nanoparticles/multiwall carbon nanotubes/polyaniline/graphite electrode for sub-nanomolar detection of lead(II) ions. J Electroanal. Chem., 2020, 879, P. 114788.

24. Abd-Rabboh H.S.M., H. Kamel A., Amr A.E.-G.E. All-solid-state calcium sensors modified with polypyrrol (PPY) and graphene oxide (GO) as solid-contact ion-to-electron transducers. Chemosensors, 2020, 8(4), P. 93.

25. Marco R. De, Veder J.-P., Clarke G., Nelson A., Prince K., Pretsch E. et al. Evidence of a water layer in solid-contact polymeric ion sensors. Phys. Chem. Chem. Phys., 2008, 10(1), P. 73-76.

26. Veder J.-P., Marco R. De, Clarke G., Chester R., Nelson A., Prince K. et al. Elimination of Undesirable Water Layers in Solid-Contact Polymeric Ion-Selective Electrodes. Anal. Chem., 2008, 80(17), P. 6731-6740.

27. Broza G., Piszczek K., Schulte K., Sterzynski T. Nanocomposites of poly(vinyl chloride) with carbon nanotubes (CNT).Compos. Sci. Technol., 2007, 67(5), P. 890-894.

28. Ashrapov A.K., Abdrakhmanova L.A., Nizarov R.K., Khosin V.G. Development of effective ways of introducing nanofillers to PVC composites. Kazan, Materials of RAACS XV workshop, 2010, V.1, P. 272-278.

29. Trommer K., Petzold C., Morgenstern B. Processing and properties of carbon nanotube PVC composites. J. Appl. Chem., 2014, P. 1-10.

30. Seeponkai N., Wootthikanokkhan J., Thanachayanont C. Synthesis and characterization of fullerene functionalized poly(vinyl chloride) (PVC) and dehydrochlorinated PVC using atom transfer radical addition and AIBN based fullerenation. J. Appl. Polym. Sci., 2013, 130(4), P. 2410-2421.

31. Wilczewski S., Sko´rczewska K., Tomaszewska J., Lewandowski K. Structure and properties of poly(vinyl chloride)/graphene nanocomposites. Polym. Test., 2020, 81, P. 106282.

32. Francis E., Tippabattini J., Choi E.-S., Thomas S., Kim J. Morphology and dielectric properties of poly(vinyl chloride)-[multiwalled carbon nanotube-barium titanate] hybrid composite. Nanosensors, Biosensors, Info-Tech Sensors and 3D Systems, 2017, Portland, Oregon, April, 2017, P. 101671V.

33. Arunachalam P. Polymer-based nanocomposites for energy and environmental applications. In book: Polymer-based nanocomposites for energy and environmental applications. Elsevier, 2018, P. 185-203.

34. Skyrczewska K., Lewandowski K., Wilczewski S. Novel composites of poly(vinyl chloride) with carbon fibre/carbon nanotube hybrid filler. Materials (Basel), 2022, 15(16), P. 5625.

35. Hu C., Yuan S., Hu S. Studies on electrochemical properties of MWNTs-Nafion composite films based on the redox behavior of incorporated Eu3+ by voltammetry and electrochemical impedance spectroscopy. Electrochim. Acta, 2006, 51(15), P. 3013-3021.

36. Jung J.-H., Vadahanambi S., Oh I.-K. Electro-active nanocomposite actuator based on fullerene-reinforced Nafion.Comp. Sci. Tech., 2010, 70(4), P. 584-592.

37. Lee K., Lee J.-W., Kim S.-I., Ju B. Single-walled carbon nanotube/Nafion composites as methanol sensors. Carbon, 2011, 49(3), P. 787-792.

38. Jeon J.-Y., Kang B.-C., Ha T.-J. Flexible pH sensors based on printed nanocomposites of single-wall carbon nanotubes and Nafion. Appl. Surf. Sci., 2020, 514, P. 145956.

39. Tajeu K.Y., Dongmo L., Tonle I.K. Fullerene/MWCNT/Nafion modified glassy carbon electrode for the electrochemical determination of caffeine. Am.J. Analyt. Chem., 2020, 11, P. 114-127.

40. Titova T.S., Yurova P.A., Kolganova I.S., Stenina L.A., Parshina A.V., Bobreshova O.V., Yaroslavtsev A.V. Potentiometric sensors based on nafion membranes modified by PEDOT for determining procaine, lidocaine and bupivacaine in aqueous solutions and pharmaceuticals. J. Analyt. Chem., 2020, 75, P. 1072-1079.

41. Hussein M.A., Alam M.M., Asiri Ab.M., Al-amshany Z.M., Hajeeassa Kh.S., Rahman M.M., Ultrasonic-assisted fabrication of poly(vinyl chloride)/mixed graphene-carbon nanotube nanocomposites as a selective Ag+ ionic sensor. J.Comp. Mat., 2019, 002199831882529.

42. Bartoszewicz B., Dabrowska S., Lewenstam A., Migdalski J., Calibration free solid contact electrodes with two PVC based membranes. Sens. Actuators: B. Chem., 2018, 274, P. 268-273.

43. Turyshev E.S., Kopytin A.V., Zhizhin K.Y., Kubasov A.S., Shpigun L.K., Kuznetsov N.T. Potentiometric quantitation of general local anesthetics with a new highly sensitive membrane sensor. Talanta, 2022, 241, P. 123239.

44. Kubasov A.S., Turishev E.S., Kopytin A.V., Shpigun L.K., Zhizhin K.Y., Kuznetsov NT. Sulfonium closo-hydridodecaborate anions as active components of a potentiometric membrane sensor for lidocaine hydrochloride. Inorg. Chim. Acta, 2021, 514, P. 119992.

45. Perelmuter M.N. Mechanical modelling of nanotube-polymer adhesion. Nanosystems: Physics, Chemistry, Mathematics, 2011, 2(2), P. 119-125.

46. Zhang D., Sun J., Lee L.J., Castro J.M. Overview of ultrasonic assisted manufacturing multifunctional carbon nanotube nanopaper based polymer nanocomposites. Eng. Sci., 2020, 10, P. 35-50.

47. Tasaki K., Gasa J., Wang H., DeSousa R. Fabrication and characterization of fullerene-Nafion composite membranes. Polymer (Guildf), 2007, 48(15), P. 4438-4448.

48. Postnov D.V., Menshikov I.A., Postnov V.N., Melnikova N.A., Glumov O.V., Murin I.V. Nafion-based nanocomposites containing fulleroid materials. Vestnik of St. Petersburg State University. Ser. 4, 2012, P. 84-88.

49. Postnov D.V., Melnikova N.A., Postnov V.N., Semenov K.N., Murin I.V. Nafion-based nanocomposites with light fullerenes and their functionalized derivatives. Rev. Adv. Mater. Sci., 2014, 39(1), P. 20-24.

50. Lyu Y., Gan S., Bao Y., Zhong L., Xu J., Wang W. et al. Solid-contact ion-selective electrodes: response mechanisms, transducer materials and wearable sensors. Membranes (Basel), 2020, 10(6), P. 128.

51. Bakker E. The phase-boundary potential model. Talanta, 2004, 63(1), P. 3-20.

52. Bakker E., Pretsch E. Modern Potentiometry. Angew. Chem.Int. Ed., 2007, 46(30), P. 5660-5668.

53. Pungor E. The new theory of ion selective electrodes. Sensors, 2001, 1, P. 1-12.

54. Badamshina E.R., Gafurova M.P. Characteristics of fullerene C60-doped polymers. Polymer Sci. B, 2008, 50(7-8), P. 215-225.

55. Guldi D.M., Menna E., Maggini M., Marcaccio M., Paolucci D., Paolucci F., et al. Supramolecular hybrids of [60]fullerene and single-wall carbon nanotubes. Chem - A. Eur. J., 2006, 12(15), P. 3975-3983.

56. Cuartero M., Parrilla M., Crespo G.A. Wearable potentiometric sensors for medical applications. Sensors, 2019, 19, P. 363-387.

57. Yeung K.K., Li J., Huang T., Hosseini I.I., Al Mahdi R., Alam M.M., Sun H., Mahshid S., Yang J., Ye T.T., et al. Utilizing gradient porous graphene substrate as the solid-contact layer to enhance wearable electrochemical sweat sensor sensitivity. Nano Lett., 2022, 22, P. 6647-6654.


Review

For citations:


Zhizhin K.Yu., Turyshev E.S., Kopytin A.V., Shpigun L.K., Kuznetsov N.T., Simonenko N.P., Zamyatina N.N., Madraimov M.S., Betenev G.I. Polymer nanocarbon materials as ion-to-electron transducers in solid-contact ion-selective electrodes. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):688-697. https://doi.org/10.17586/2220-8054-2022-13-6-688-697

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)