Нанофибриллы целлюлозы с высоким содержанием лигнина, полученные из термомеханической массы
https://doi.org/10.17586/2220-8054-2022-13-6-698-708
Аннотация
Об авторах
А. А. ЛугининаРоссия
С. В. Кузнецов
Россия
А. А. Александров
Россия
Р. В. Гайнутдинов
Россия
Д. И. Петухов
Россия
В. В. Воронов
Россия
Е. В. Чернова
Россия
П. П. Федоров
Россия
Список литературы
1. Ahankari S.S., Subhedar A.R., Bhadauria S.S., Dufresne A. Nanocellulose in food packaging: a review. Carbohyd. Polym., 2020, 255, P. 117479.
2. Liu Z., Zhang S., He B., et al. Synthesis of cellulose aerogels as promising carriers for drug delivery: a review. Cellulose, 2021, 28, P. 2697-2714.
3. De Amorim J.D.P., de Souza K.C., Duarte C.R., et al. Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering: a review. Environ. Chem. Lett., 202, 18, P. 851-869.
4. Fedorov P.P., Luginina A.A., Kuznetsov S.V., et al.Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particle. Cellulose, 2019, 26, P. 2403-2423.
5. De France K., Zeng Z., Wu T., Nystro¨m G. Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up Fabrication. Advanced Materials, 2021, 33(28), P. 2000657.
6. Dias O.A.T., Konar S., Lea˜o A.L., et al. Current State of Applications of Nanocellulose in Flexible Energy and Electronic Devices. Frontiers in Chemistry, 2020, 8, P. 420.
7. Nie S., Hao N., Zhang K., et al. Cellulose nanofibrils-based thermally conductive composites for flexible electronics: a mini review. Cellulose, 2020, 27, P. 4173-4187.
8. Fedorov P.P., Luginina A.A., Kuznetsov S.V., et al. Hydrophobic up-conversion carboxylated nanocellulose/fluoride phosphor composite films modified with alkyl ketene dimer. Carbohyd. Polym., 2020, 250, P. 116866.
9. Luginina A.A., Kuznetsov S.V., Ivanov, V.K. et al. Laser damage threshold of hydrophobic up-conversion carboxylated nanocellulose/SrF2:Ho composite films functionalized with 3-aminopropyltriethoxysilane. Cellulose, 2021, 28, P. 10841-10862.
10. Guan Q.F., Yang H.B., Han Z.M., et al. An all-natural bioinspired structural material for plastic replacement. Nat.Commun., 2020, 11(1), P. 1-7.
11. Turbak A.F., Snyder F.W., Sandberg K.R. Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J. Appl. Polym. Sci., Appl. Polym. Symp., 1983, 37, P. 815-827.
12. Herrick F.W., Casebier R.L., Hamilton J.K., Sandberg K.R. Microfibrillated cellulose: morphology and accessibility. J. Appl. Polym. Sci., Appl. Polym. Symp., 1983, 37, P. 797-813.
13. Klemm D., Kramer F., Moritz S., et al. Nanocelluloses: a new family of nature-based materials. Angew. Chem.Int. Ed., 2011, 50, P. 5438-5466.
14. Klemm D., Cranston E., Fischer D., et al. Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater. Today, 2018, 21, P. 720-748.
15. Park C.W, Han S.Y, Namgung H.W, et al. Preparation and characterization of cellulose nanofibrils with varying chemical compositions. BioResources, 2017, 12(3), P. 5031-5044.
16. Nader S., Brosse N., Khadraoui M., et al. A low-cost environmentally friendly approach to isolate lignin containing micro and nanofibrillated cellulose from Eucalyptus globulus bark by steam explosion. Cellulose, 2022, 29, P. 5593-5607.
17. Oliaei E., Linde´n P.A., Wu Q. et al. Microfibrillated lignocellulose (MFLC) and nanopaper films from unbleached kraft softwood pulp. Cellulose, 2020, 27, P. 2325-2341.
18. Diop C.I.K., Tajvidi M., Bilodeau M. A., et al. Evaluation of the incorporation of lignocellulose nanofibrils as sustainable adhesive replacement in medium density fiberboards. Industrial Crops and Products, 2017, 109, P. 27-36.
19. Khadraoui M., Khiari R., Bergaoui L., Mauret E. Production of lignin-containing cellulose nanofibrils by the combination of different mechanical processes. Industrial Crops and Products, 2022, 183, P. 114991.
20. Espinosa E., Dom´ınguez-Robles J., Sa´nchez R., et al. The effect of pre-treatment on the production of lignocellulosic nanofibers and their application as a reinforcing agent in paper. Cellulose, 2017, 24, P. 2605-2618.
21. Terrett O.M, Lyczakowski J.J., et al. Molecular architecture of softwood revealed by solid-state NMR. Nat.Commun., 2019, 10, P. 4978.
22. Liao J., Latif N.H.A., Trache D., et al. Current advancement on the isolation, characterization and application of lignin.Int. J. Biol. Macromol., 2020, 162, P. 985-1024.
23. Solala I., Iglesias M.C., Peresin M.S. On the potential of lignin-containing cellulose nanofibrils (LCNFs): a review on properties and applications. Cellulose, 2020, 27, P. 1853-1877.
24. Sadeghifar H., Venditti R., et al. Cellulose-lignin biodegradable and flexible UV protection film. ACS Sustain Chem. Eng., 2017, 5, P. 625-631.
25. Farooq M., Zou T., Riviere G., et al. Strong ductile and waterproof cellulose nanofibril composite films with colloidal lignin particles. Biomacromolecules, 2018, 20, P. 693-704.
26. Huang C., Dong H., Zhang Z. et al. Procuring the nano-scale lignin in prehydrolyzate as ingredient to prepare cellulose nanofibril composite film with multiple functions. Cellulose, 2020, 27, P. 9355-9370.
27. Chen Y., Fan D., Han Y. et al. Effect of high residual lignin on the properties of cellulose nanofibrils/films. Cellulose, 2018, 25, P. 6421-6431.
28. Leˆ H.Q., Dimic-Misic K., Johansson L., et al. Effect of lignin on the morphology and rheological properties of nanofibrillated cellulose produced from γ-valerolactone/water fractionation process. Cellulose, 2018, 25, P. 179-194.
29. Liu K., Du H., Zheng T., et al. Lignin-containing cellulose nanomaterials: preparation and applications. Green. Chem., 2021, 23(24), P. 9723-9746.
30. Ferrer A., Hoeger I.C., et al. Reinforcement of polypropylene with lignocellulose nanofibrils and compatibilization with biobased polymers. J. Appl. Polym. Sci., 2016, 133, P. 43854.
31. Visanko M., Sirvio¨ J.A., Piltonen P., et al. Castor oil-based biopolyurethane reinforced with wood microfibers derived from mechanical pulp. Cellulose, 2017, 24, P. 2531-2543.
32. Herzele S., Veigel S., Liebner F., et al. Reinforcement of polycaprolactone with microfibrillated lignocellulose. Ind. Crops. Prod., 2016, 93, P. 302-308.
33. Ballner D., Herzele S., Keckes J., et al. Lignocellulose nanofiber-reinforced polystyrene produced from composite microspheres obtained in suspension polymerization shows superior mechanical performance. ACS Appl. Mater.Interfaces, 2016, 8, P. 13520-13525.
34. Isogai A., Kato Y., Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose, 1998, 5, P. 153-164.
35. Isogai T., Saito T., Isogai A. Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidatin. Cellulose, 2011, 18, P. 421-431.
36. Saito T., Kimura S., et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 2007, 8, P. 2485-2491.
37. Luginina A.A., Kuznetsov S.V., Ivanov V.K., et al. Dispersibility of freeze-drying unmodified and modified TEMPO-oxidized cellulose nanofibrils in organic solvents. Nanosystems: Phys., Chem., Math., 2021, 12(6), P. 763-772.
38. Jiang F., Han S., Hsieh Y.L. Controlled defibrillation of rice straw cellulose and selfassembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Advances, 2013, 3(30), P. 12366-12375.
39. Chen Y.W., Lee H.V., Juan J.C., Phang S.M. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohyd. Polym., 2016, 151, P. 1210-1219.
40. Sluiter J.B., Ruiz R.O., Scarlata C.J., Sluiter A.D., Wolfrum E.J.Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods. Agric. Food Chem., 2010, 58(16), P. 9043-9053.
41. Nikitin V.M., Obolenskaya A.V., Schegolev V.P. Chemistry of wood and cellulose. M.: Lesnay promyshlennost, 1978, 368 p. (in Russian)
42. Bra¨nnvall E., Aulin C. CNFs from softwood pulp fibers containing hemicellulose and lignin. Cellulose, 2022, 29, P. 4961-4976.
43. Bikales N.M., Segal L. Cellulose and cellulose derivatives, Part 2, M.: Mir, 1974, 510 p. (in Russian)
44. Zhao C., Zhang H., Li, Z. et al. Further understanding the influence of fiber surface and internal charges on the interfiber bonding capability and resulting paper strength. Cellulose, 2017, 24, P. 2977-2986.
45. Rohaizu R., Wanrosli W.D. Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose. Ultrason. Sonochem., 2017, 34, P. 631-639.
46. Deepa B., Abraham E., Cordeiro N. et al. Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose, 2015, 22, P. 1075-1090.
47. Yao J., Odelius K., Hakkarainen M. Microwave Hydrophobized Lignin with Antioxidant Activity for Fused Filament Fabrication. ACS Appl. Polym. Mater., 2021, 3(7), P. 3538-3548.
48. Sun X.F., Xu F., Sun R.C., et al. Characteristics of degraded cellulose obtained from steamexploded wheat straw. Carbohydr Res., 2005, 340, P. 97-106.
49. Yang M., Zhang X., Guan S., et al. Preparation of lignin containing cellulose nanofibers and its application in PVA nanocomposite films.Int. J. Biol. Macromol., 2020, 158, P. 1259-1267.
50. Jiang Y., Wang Z., Liu X., et al. Highly Transparent, UV-Shielding, and Water-Resistant Lignocellulose Nanopaper from Agro-Industrial Waste for Green Optoelectronics. ACS Sustain. Chem. Eng., 2020, 8(47), P. 17508-17519.
51. Wenzel R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem., 1936, 28(8), P. 988-994.
52. Fu H., Li Y., Wang B., et al. Structural change and redispersion characteristic of dried lignin-containing cellulose nanofibril and its reinforcement in PVA nanocomposite film. Cellulose, 2021, 28, P. 7749-7764.
53. Li Y., Zou Y., Hou Y. Fabrication and UV-blocking property of nano-ZnO assembled cotton fibers via a two-step hydrothermal method. Cellulose, 2011, 18, P. 1643-1649.
Рецензия
Для цитирования:
Лугинина А.А., Кузнецов С.В., Александров А.А., Гайнутдинов Р.В., Петухов Д.И., Воронов В.В., Чернова Е.В., Федоров П.П. Нанофибриллы целлюлозы с высоким содержанием лигнина, полученные из термомеханической массы. Наносистемы: физика, химия, математика. 2022;13(6):698-708. https://doi.org/10.17586/2220-8054-2022-13-6-698-708
For citation:
Luginina A.A., Kuznetsov S.V., Alexandrov A.A., Gainutdinov R.V., Petukhov D.I., Voronov V.V., Chernova E.V., Fedorov P.P. High lignin content cellulose nanofibrils obtained from thermomechanical pulp. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):698-708. https://doi.org/10.17586/2220-8054-2022-13-6-698-708