Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

On the spectrum of the two-particle Schrödinger operator with point potential: one dimensional case

https://doi.org/10.17586/2220-8054-2023-14-5-505-510

Abstract

In the paper, a one-dimensional two-particle quantum system interacted by two identical point interactions is considered. The corresponding Schrödinger operator (energy operator) h" depending on " is constructed as a self-adjoint extension of the symmetric Laplace operator. The main results of the work are based on the study of the operator h". First, the essential spectrum is described. The existence of unique negative eigenvalue of the Schr¨odinger operator is proved. Further, this eigenvalue and the corresponding eigenfunction are found.

About the Author

U. N. Kuljanov
Samarkand State University; Samarkand branch of Tashkent State University of Economics
Uzbekistan

Utkir Nematovich Kuljanov

140104, University boulvare. 15, Samarkand

Professorlar street 51, Samarkand



References

1. Berezin F. A., Faddeev L. D. Remark on the Schr¨odinger equation with singular potential. Dokl. Akad. Nauk SSSR, 1961, 137(5), P. 1011–1014.

2. Minlos R. A., Faddeev L. D. Comment on the problem of three particles with point interactions. Dokl. Akad. Nauk SSSR, 1961, 141(6), P. 1335– 1338.

3. Minlos R. A., Faddeev L. D. Point interaction for a three-particle system in quantum. Dokl. Akad. Nauk SSSR, 1962, 14(1), P. 1315–1316.

4. Minlos R. A., Shermatov M. Kh. On point-like interactions of three quantum particles. Vestnik Moskov Univ. Ser.I Mat. Mekh, 1989, 6(1), P. 7–14.

5. Melnikov A. M., Minlos R. A. Point interaction of three different particles. Advances in Soviet Mathematics, 1991, 6(1), P. 99–122.

6. Akhiezer N. I., Glazman I. M. Theory of Linear Operators in Hilbert Space. Publishing Paperback - December 16, USA.: 1993. 377 p.

7. Muminov Z. E., Kuljanov U. N., Lakaev SH. S. On the Spectrum of the Two-particle Shrodinger Operator with Point Interaction. Lobachevskii Journal of Mathematics, 2021, 42(3), P. 598–605.

8. Fassari S., Rinaldi F. On the Spectrum of the Schrodinger Hamiltonian of the One-Dimensional Harmonic Oscillator Perturbed by Two Identical Attractive Point Interactions. Rep. Math. Phys., 2012, 69(1), P. 353–370.

9. Fassari S., Rinaldi F. On the spectrum of the Schr¨odinger Hamiltonian with a particular configuration of three one-dimensional point interactions. Rep. Math. Phys., 2009, 64(3), P. 367–393.

10. Albeverio S., Fassari S., Rinaldi F. The discrete spectrum of the spinless one-dimensional Salpeter Hamiltonian perturbed by -interactions. J. Phys. A., 2015, 48(3), P. 185–201.

11. Albeverio S., Fassari S., Rinaldi F. The Hamiltonian of the harmonic oscillator with an attractive 0 - interaction centred at the origin as approximated by the one with a triple of attractive 􀀀 interactions. J. Phys. A., 2016, 49(2), P. 667–688.

12. Imomov A.A., Bozorov I.N., Hurramov A.M., On the number of eigenvalues of a model operator on a one-dimensional lattice. Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, 78, P. 22–37.

13. Muminov M.I., Khurramov A.M., Bozorov I.N. On eigenvalues and virtual levels of a two-particle Hamiltonian on a d􀀀dimensional lattice. Nanosystems: Phys. Chem. Math., 2023, 14(3), P. 237–244.

14. Muminov M.I., Khurramov A.M., Bozorov I.N. Conditions for the existence of bound states of a two-particle Hamiltonian on a three-dimensional lattice. Nanosystems: Phys. Chem. Math., 2022, 13(3), P. 295–303.

15. Bozorov I.N., Khamidov Sh. I., Lakaev S.N. The number and location of eigenvalues of the two particle discrete Schr¨odinger operators. Lobachevskii Journal of Mathematics, 2022, 43(11), P. 3079–3090.


Review

For citations:


Kuljanov U.N. On the spectrum of the two-particle Schrödinger operator with point potential: one dimensional case. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(5):505-510. https://doi.org/10.17586/2220-8054-2023-14-5-505-510

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)