On the discrete spectrum of the Schrödinger operator using the 2+1 fermionic trimer on the lattice
https://doi.org/10.17586/2220-8054-2023-14-5-518-529
Abstract
We consider the three-particle discrete Schrödinger operator H; (K); K 2 T3, associated with the three-particle Hamiltonian (two of them are fermions with mass 1 and one of them is arbitrary with mass m = 1= < 1), interacting via pair of repulsive contact potentials > 0 on a three-dimensional lattice Z3. It is proved that there are critical values of mass ratios = 1 and = 2 such that if 2 (0; 1), then the operator H; (0) has no eigenvalues. If 2 ( 1; 2), then the operator H; (0) has a unique eigenvalue; if > 2, then the operator H; (0) has three eigenvalues lying to the right of the essential spectrum for all sufficiently large values of the interaction energy.
Keywords
About the Authors
A. M. KhalkhuzhaevUzbekistan
Ahmad M. Khalkhuzhaev
Mirzo Ulugbek 81, 100170
I. A. Khujamiyorov
Uzbekistan
Islom A. Khujamiyorov
University Boulevard 15, Samarkand 140104
References
1. Michelangeli A., Ottolini A. On point interactions realised as Ter-Martirosyan-Skornyakov hamiltonians. Rep. Math. Phys., 2017, 79(2), P. 215– 260.
2. Michelangeli A., Pfeiffer P. Stability of the (2+2)-fermionic system with zero-range interaction. J. Phys. A Math. Theor., 2016, 49, P. 105301.
3. Correggi M., Dell Antonio G., Finco D., Michelangeli A., Teta A. Stability for a system of N fermions plus a different particle with zero-range interactions. Rev. Math. Phys., 2012, 24(7), P. 1250017.
4. Finco D., Teta A. Quadratic forms for the fermionic unitary gas model. Rep. Math. Phys., 2012, 69(2), P. 131–159.
5. Becker S., Michelangeli A., Ottolini A. Spectral Analysis of the 2+1 Fermionic Trimer with Contact Interactions. Math. Phys. Anal. Geom., 2018, 21, P. 35.
6. Winkler K., Thalhammer G., Lang F., Grimm R., Hecker Denschlag J., Daley A.J., Kantian A., B¨uchler H.P., Zoller P. Repulsively bound atom pairs in an optical lattice. Nature, 2006, 441, P. 853–856.
7. Bloch I. Ultracold quantum gases in optical lattices.Nat. Phys., 2005, 1, P. 23–30.
8. Jaksch D., Zoller P. The cold atom Hubbard toolbox. Ann. Phys., 2005, 315(1), P. 52–79.
9. Thalhammer G., Theis M., Winkler K., Grimm R., Hecker Denschlag J. Inducing an optical Feshbach resonance via stimulated Raman coupling. Phys. Rev. A, 2005, 71, P. 033403
10. Heo M.S., Wang T.T., Christensen C.A., Rvachov T.M., Cotta D.A., Choi J.H., LeeY.R., Ketterle W. Formation of ultracold fermionic NaLi Feshbach molecules. Phys. Rev. A., 2012, 86(2), P. 021602.
11. M. Lewenstein et al., Atomic Bose-Fermi mixtures in an optical lattice. Phys. Rev. Lett., 2004, 92, P. 050401.
12. Lakaev S.N., Dell’Antonio G.F., Khalkhuzhaev A.M. Existence of an isolated band of a system of three particles in an optical lattice. J. Phys. A: Math. Theor., 2016, 49(14), 145204/15.
13. Braaten E., Hammer H.W. Universality in few-body systems with large scattering length. Phys. Rep., 2006, 428, P. 259–390.
14. Giorgini S., Pitaevskii L.P., Stringari S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys., 2008, 80, P. 1215–74.
15. Lakaev S.N., Lakaev Sh. S. The existence of bound states in a system of three particles in an optical lattice. J. Phys. A: Math. Theor., 2017, 50(33), 335202/17.
16. Dell’Antonio G.F., Muminov Z.I. and Shermatova Y. M. On the number of eigenvalues of a model operator related to a system of three particles on lattices. J. Phys. A: Math. Theor., 2011, 44(31), P. 315302/27.
17. Lakaev S.N., Khalkhuzhaev A.M. On the number of eigenvalues of the two-particle discrete Schrodinger operator. (Russian) Theoret. and Math. Phys. 2009, 158(2), P. 221–232.
18. Khalkhuzhaev A.M. The essential spectrum of the three-particle discrete operator corresponding to a system of three fermions on a lattice. Russian Mathematics, 2017, 61(9), P. 67–78.
19. Reed M. and Simon B. Methods of Modern Mathematical Physics VI:Analysis of Operators New York, Academic Press, 1979.
20. Zucker I.J. 70+ Years of the Watson Integrals. J. Stat. Phys., 2011, 145(3), P. 591–612.
21. Faddeev L.D. Mathematical questions in the quantum theory of scattering for a system of three particles. Trudy Mat. Inst. Steklov, 1963, 69, P. 3–122.
22. Lakaev S.N. On Efimov’s effect in a system of three identical quantum particles. Functional Analysis and Its Applications, 1993, 27, P. 166–175.
23. Pankov A.A. Lecture Notes on Schr¨odinger equations. Nova Science Publishers, New York. 2007.
Review
For citations:
Khalkhuzhaev A.M., Khujamiyorov I.A. On the discrete spectrum of the Schrödinger operator using the 2+1 fermionic trimer on the lattice. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(5):518-529. https://doi.org/10.17586/2220-8054-2023-14-5-518-529