Verification of continuum-based model of carbon materials
https://doi.org/10.17586/2220-8054-2023-14-5-539-543
Abstract
The continuous medium approximation to the description of a carbon material previously used to model the properties of spherical carbon shells of nanometer diameter. This approach is based on the transition from lattice operators to field operators. The present study verifies the given model evaluating the energy spectrum of electrons in a perfect flat carbon monolayer. An implementation of the Dirac cones within the continuous medium framework is demonstrated. Its are close to the positions of the vertices of the Brillouin zone for graphene. Increase of the Taylor series expansion order of field operators makes the result precise, and the approximate positions of the Dirac cones match the exact data for graphene.
About the Author
K. B. TsiberkinRussian Federation
Kirill B. Tsiberkin
Bukireva, 15, Perm, 614068
References
1. Eletskii A.V., Smirnov B. M. Fullerenes and carbon structures. Physics Uspekhi, 1995, 38, P. 935–964.
2. Castro Neto A. H., Guiena F., Peres N. M. R., et al. The electronic properties of graphene. Review of Modern Physics, 2009, 81, P. 109–162.
3. Esquinazi P. D. Basic physics of functionalized graphite, Springer, New-York: 2016, 185 p.
4. C. N. R. Rao, R. Seshadri, A. Govindaraj, et al. Fullerenes, nanotubes, onions and related carbon structures. Material Science and Engineering, 1995, 15, P. 209–262.
5. Makarova T. L. Magnetic properties of carbon structures. Semiconductors, 2004, 38, P. 615–638.
6. Tiwari J. N., Tiwari R. N., Kim K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Material Science, 2012, 57, P. 724–803.
7. Mironov G. I., Murzashev A. I. Energy spectrum of C60 fullerene. Physics of Solid State, 2011, 53, P. 2393–2397.
8. Silantiev A.V. The energy spectrum and optical properties of fullerene C70 within the Hubbard model. Optics and Spectroscopy, 2018, 124, P. 155–162.
9. Silantiev A.V. Energy spectrum and optical properties of C24 fullerene within the Hubbard model. Physics of Metals and Metallography, 2020, 121, P. 195–201.
10. Rudakov G. A., Tsiberkin K. B., Ponomarev R. S., et al. Magnetic properties of transition metal nanoparticles enclosed in carbon nanocages. Journal of Magnetism and Magnetic Materials, 2019, 427, P. 34–39.
11. Sosunov A.V., Ziolkowska D. A., Ponomarev R. S., et al. CFx primary batteries based on fluorinated carbon nanocages. New Journal of Chemistry, 2019, 43, P. 12892–12895.
12. Tsiberkin K. B. Modeling of the energy spectrum of a carbon sphere in the continuous medium limit. Journal of Theoretical and Experimental Physics, 2022, 135, P. 921–926.
13. Herring C., Kittel C. On the theory of spin waves in ferromagnetic media. Physical Review, 1951, 81, P. 869–880.
14. Rabinovich M. I., Trubetskov D. I. Oscillations and waves in linear and nonlinear systems, Springer, Amsterdam, 1989, 578 p.
15. Scarpa F., Adhikari S., Gil A. J., Remillat C. The bending of single layer graphene sheets: the lattice versus continuum approach. Nanotechnology, 2010, 21, P. 125702.
16. Popov I.Y., Blinova I.V., Popov A. I. A model of a boundary composed of the Helmholtz resonators. Complex Variables and Elliptic Equations, 2021, 66, P. 1256–1263.
Review
For citations:
Tsiberkin K.B. Verification of continuum-based model of carbon materials. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(5):539-543. https://doi.org/10.17586/2220-8054-2023-14-5-539-543