Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Magnetic nanoparticles in solid matrices: formation and fixation of structures, induced by magnetic field

https://doi.org/10.17586/2220-8054-2023-14-5-544-548

Abstract

In this article, the structures formed by the action of the magnetic field to magnetite nanoparticles, embedded into transparent matrices from ferrofluids, were analyzed. As the matrices polyvinyl alcohol and epoxy resin were used, however, the results obtained may be applicable to other media, for example, biological. The data of this work can be useful both for physical investigations of magnetic nanomaterials and for more practical studies, for instance, aimed at solving some environmental problems.

About the Authors

I. V. Pleshakov
Ioffe Institute
Russian Federation

Ivan V. Pleshakov

26 Politechnicheskaya str., St. Petersburg, 194021



A. A. Alekseev
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Arseniy A. Alekseev

29 Polytechnicheskaya str., St. Petersburg, 195251



E. E. Bibik
Saint Petersburg State Institute of Technology (Technical University)
Russian Federation

Efim E. Bibik

24-26/49 A Moskovskiy ave., 190013, St. Petersburg



V. I. Dudkin
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation

Valentin I. Dudkin

22 Bolshevikov ave., St. Petersburg, 193232



T. Yu. Kudryashova
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Tatiana Yu. Kudryashova

29 Polytechnicheskaya str., St. Petersburg, 195251



E. K. Karseeva
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Elina K. Karseeva

29 Polytechnicheskaya str., St. Petersburg, 195251



T. A. Kostitsyna
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Tatiana A. Kostitsyna

29 Polytechnicheskaya str., St. Petersburg, 195251



E. A. Medvedeva
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Ekaterina A. Medvedeva

29 Polytechnicheskaya str., St. Petersburg, 195251



References

1. Liu C., Li F., Ma L.-P., Cheng H.-M. Advanced Materials for Energy Storage. Adv. Mater., 2010, 22, P. 28–62.

2. Zhou G., Li F., Cheng H.-M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci., 2014, 7, P. 1307–1338.

3. Wang G., Zhang L., Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012, 41, P. 797–828.

4. Zhong C., Deng Y., Hu W., Qiao J., Zhang L., Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev., 2015, 44, P. 7484–7539.

5. Bhojane P. Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding. J. Energy Storage, 2022, 45, 103654.

6. Sahin M., Blaabjerg F., Sangwongwanich A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies (Basel), 2022, 15 (3), P. 674–699.

7. Wei W., Cui X., Chen W., Ivey D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev., 2011, 40, P. 1697–1721.

8. Simin He, Zunli Mo, Chao Shuai, Wentong Liu, Ruimei Yue, Guigui Liu, Hebing Pei, Ying Chen, Nijuan Liu, Ruibin Guo. Pre-intercalation -MnO2 zinc-ion hybrid supercapacitor with high energy storage and ultra-long cycle life. Applied Surface Science, 2022, 577, 151904.

9. Gao Y.N., Yang H.Y., Bai Y., Wu C. Mn-based oxides for aqueous rechargeable metal ion batteries. J. Mater. Chem. A, 2021, 9, P.11472–11500.

10. Julien C., Mauger A. Nanostructured MnO2 as electrode materials for energy storage. Nanomaterials, 2017, 7, 396.

11. Subramanian V., Zhu H., Vajtai R., Ajayan P.M., Wei B. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B, 2005, 109, P. 20207–20214.

12. Hashem A.M., Abdel-Ghany A.E., El-Tawil R., Bhaskar A., Hunzinger B., Ehrenberg H., Mauger A., Julien C.M. Urchin-like -MnO2 formed of nano-needles for high-performance lithium batteries. Ionics, 2016, 22, P. 2263–2271.

13. Yin B., Zhang S., Jiang H., Qu F.,Wu X. Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. J. Mater. Chem., 2015, 3, P. 5722–5729.

14. Alfaruqi M.H., Gim J., Kim S., Song J., Kim J. A layered -MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun., 2015, 60, P. 121–125.

15. Cui H.J., Huang H.Z., Fu M.L., Yuan B.L., Pearl W. Facile synthesis and catalytic properties of single crystalline -MnO2 nanorods. Catal. Commun., 2011, 12, P. 1339–1343.

16. Kumar H., Sangwan M., Sangwan P. Synthesis and characterization of MnO2 nanoparticles using co-precipitation technique. Int. J. Chem. Chem. Eng., 2013, 3, P. 155–160.

17. Samantha Prabath Ratnayake, Jiawen Ren, Elena Colusso, Massimo Guglielmi, Alessandro Martucci, Enrico Della Gaspera. SILAR deposition of metal oxide nanostructured films. Small, 2021, 2101666.

18. Tolstoy V.P. Successive ionic layer deposition. The use in nanotechnology Russ. Chem. Rev., 2006, 75, P. 161.

19. Ragupathy P., Vasan H.N., Munichandraiah N. Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies. J. Electrochem. Soc., 2008, 155, P. 34–40.

20. Kodintsev I.A., Martinson K.D., Lobinsky A.A., Popkov V.I. SILD synthesis of the efficient and stable electrocatalyst based on CoO-NiO solid solution toward hydrogen production. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (6), P. 681–685.

21. Kodintsev I.A., Martinson K.D., Lobinsky A.A., Popkov V.I. Successive ionic layer deposition of co-doped Cu(OH)2 nanorods as electrode material for electrocatalytic reforming of ethanol. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (5), P. 573–578.

22. Lobinsky A.A., Kaneva M.V. Synthesis Ni-doped CuO nanorods via successive ionic layer deposition method and their capacitive performance. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (5), P. 573–578.

23. Lobinsky A.A., Kaneva M.V. Layer-by-layer synthesis of Zn-doped MnO2 nanocrystals as cathode materials for aqueous zinc-ion battery. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12 (2), P. 182–187.

24. Lobinsky A.A., Tenevich M.I. Synthesis 2D nanocrystals of Co-doped manganese oxide as cathode materials of zinc-ion hybrid supercapacitor. Nanosystems: Physics, Chemistry, Mathematics, 2022, 13 (5), P. 525–529.

25. Lobinsky A.A., Kodintsev I.A., Tenevich M.I., Popkov V.I. A novel oxidation–reduction route for the morphology-controlled synthesis of manganese oxide nanocoating as highly effective material for pseudocapacitors. Coatings, 2023, 13 (2), 361.

26. Post J.E., Veblen D.R. Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. American Mineralogist, 1990, 75.

27. Min S., Kim Y. Physicochemical characteristics of the birnessite and todorokite synthesized using various methods. Minerals, 2020, 10, P. 1–17.

28. Sabri M., King H.J., Gummow R.J., Malherbe F., Hocking R.K. The Oxidation of Peroxide by Disordered Metal Oxides: A Measurement of Thermodynamic Stability “By Proxy”. Chempluschem, 2018, 83, P. 620–629.

29. Post J.E., McKeown D.A., Heaney P.J. Raman spectroscopy study of manganese oxides: Layer structures. American Mineralogist, 2021, 106, P. 351–366.

30. Julien C., et al. Raman spectra of birnessite manganese dioxides. Solid State Ion, 2003, 159, P. 345–356.


Review

For citations:


Pleshakov I.V., Alekseev A.A., Bibik E.E., Dudkin V.I., Kudryashova T.Yu., Karseeva E.K., Kostitsyna T.A., Medvedeva E.A. Magnetic nanoparticles in solid matrices: formation and fixation of structures, induced by magnetic field. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(5):544-548. https://doi.org/10.17586/2220-8054-2023-14-5-544-548

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)