Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Послойный синтез пористых нанопокрытий оксида марганца, как электроактивного материала для псевдоконденсаторов

https://doi.org/10.17586/2220-8054-2023-14-5-554-559

Аннотация

В настоящей работе пористое нанопокрытие из оксида марганца было получено путем ионного наслаивания из водных растворов перманганата калия и ДМСО. Морфология, фазовый и химический состав синтезированных нанопокрытий были охарактеризованы методами РФА, СЭМ, ЭДС и КР-спектроскопии. Возможность контролируемого изменения морфологии полученных соединений была продемонстрирована путем изменения концентрации реагентов и количества циклов обработки с целью получения оптимальных электрохимических характеристик. Электроды на основе вспененного никеля, покрытые пленками пористого оксида марганца, показали высокую удельную емкость (1324 Ф/г и 297 Ф/г при плотности тока 1 А/г в 1M NaOH и 1M Na2SO4, соответственно) как в нейтральном, так и в щелочном электролите.

Об авторах

А. А. Лобинский
Ioffe Institute
Россия


М. В. Канева
Ioffe Institute
Россия


А. К. Бачина
Ioffe Institute
Россия


М. И. Теневич
Ioffe Institute
Россия


Список литературы

1. Liu C., Li F., Ma L.-P., Cheng H.-M. Advanced Materials for Energy Storage. Adv. Mater., 2010, 22, P. 28–62.

2. Zhou G., Li F., Cheng H.-M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci., 2014, 7, P. 1307–1338.

3. Wang G., Zhang L., Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012, 41, P. 797–828.

4. Zhong C., Deng Y., Hu W., Qiao J., Zhang L., Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev., 2015, 44, P. 7484–7539.

5. Bhojane P. Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding. J. Energy Storage, 2022, 45, 103654.

6. Sahin M., Blaabjerg F., Sangwongwanich A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies (Basel), 2022, 15 (3), P. 674–699.

7. Wei W., Cui X., Chen W., Ivey D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev., 2011, 40, P. 1697–1721.

8. Simin He, Zunli Mo, Chao Shuai, Wentong Liu, Ruimei Yue, Guigui Liu, Hebing Pei, Ying Chen, Nijuan Liu, Ruibin Guo. Pre-intercalation -MnO2 zinc-ion hybrid supercapacitor with high energy storage and ultra-long cycle life. Applied Surface Science, 2022, 577, 151904.

9. Gao Y.N., Yang H.Y., Bai Y., Wu C. Mn-based oxides for aqueous rechargeable metal ion batteries. J. Mater. Chem. A, 2021, 9, P.11472–11500.

10. Julien C., Mauger A. Nanostructured MnO2 as electrode materials for energy storage. Nanomaterials, 2017, 7, 396.

11. Subramanian V., Zhu H., Vajtai R., Ajayan P.M., Wei B. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B, 2005, 109, P. 20207–20214.

12. Hashem A.M., Abdel-Ghany A.E., El-Tawil R., Bhaskar A., Hunzinger B., Ehrenberg H., Mauger A., Julien C.M. Urchin-like -MnO2 formed of nano-needles for high-performance lithium batteries. Ionics, 2016, 22, P. 2263–2271.

13. Yin B., Zhang S., Jiang H., Qu F.,Wu X. Phase-controlled synthesis of polymorphic MnO2 structures for electrochemical energy storage. J. Mater. Chem., 2015, 3, P. 5722–5729.

14. Alfaruqi M.H., Gim J., Kim S., Song J., Kim J. A layered -MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun., 2015, 60, P. 121–125.

15. Cui H.J., Huang H.Z., Fu M.L., Yuan B.L., Pearl W. Facile synthesis and catalytic properties of single crystalline -MnO2 nanorods. Catal. Commun., 2011, 12, P. 1339–1343.

16. Kumar H., Sangwan M., Sangwan P. Synthesis and characterization of MnO2 nanoparticles using co-precipitation technique. Int. J. Chem. Chem. Eng., 2013, 3, P. 155–160.

17. Samantha Prabath Ratnayake, Jiawen Ren, Elena Colusso, Massimo Guglielmi, Alessandro Martucci, Enrico Della Gaspera. SILAR deposition of metal oxide nanostructured films. Small, 2021, 2101666.

18. Tolstoy V.P. Successive ionic layer deposition. The use in nanotechnology Russ. Chem. Rev., 2006, 75, P. 161.

19. Ragupathy P., Vasan H.N., Munichandraiah N. Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies. J. Electrochem. Soc., 2008, 155, P. 34–40.

20. Kodintsev I.A., Martinson K.D., Lobinsky A.A., Popkov V.I. SILD synthesis of the efficient and stable electrocatalyst based on CoO-NiO solid solution toward hydrogen production. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (6), P. 681–685.

21. Kodintsev I.A., Martinson K.D., Lobinsky A.A., Popkov V.I. Successive ionic layer deposition of co-doped Cu(OH)2 nanorods as electrode material for electrocatalytic reforming of ethanol. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (5), P. 573–578.

22. Lobinsky A.A., Kaneva M.V. Synthesis Ni-doped CuO nanorods via successive ionic layer deposition method and their capacitive performance. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (5), P. 573–578.

23. Lobinsky A.A., Kaneva M.V. Layer-by-layer synthesis of Zn-doped MnO2 nanocrystals as cathode materials for aqueous zinc-ion battery. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12 (2), P. 182–187.

24. Lobinsky A.A., Tenevich M.I. Synthesis 2D nanocrystals of Co-doped manganese oxide as cathode materials of zinc-ion hybrid supercapacitor. Nanosystems: Physics, Chemistry, Mathematics, 2022, 13 (5), P. 525–529.

25. Lobinsky A.A., Kodintsev I.A., Tenevich M.I., Popkov V.I. A novel oxidation–reduction route for the morphology-controlled synthesis of manganese oxide nanocoating as highly effective material for pseudocapacitors. Coatings, 2023, 13 (2), 361.

26. Post J.E., Veblen D.R. Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. American Mineralogist, 1990, 75.

27. Min S., Kim Y. Physicochemical characteristics of the birnessite and todorokite synthesized using various methods. Minerals, 2020, 10, P. 1–17.

28. Sabri M., King H.J., Gummow R.J., Malherbe F., Hocking R.K. The Oxidation of Peroxide by Disordered Metal Oxides: A Measurement of Thermodynamic Stability “By Proxy”. Chempluschem, 2018, 83, P. 620–629.

29. Post J.E., McKeown D.A., Heaney P.J. Raman spectroscopy study of manganese oxides: Layer structures. American Mineralogist, 2021, 106, P. 351–366.

30. Julien C., et al. Raman spectra of birnessite manganese dioxides. Solid State Ion, 2003, 159, P. 345–356.


Рецензия

Для цитирования:


Лобинский А.А., Канева М.В., Бачина А.К., Теневич М.И. Послойный синтез пористых нанопокрытий оксида марганца, как электроактивного материала для псевдоконденсаторов. Наносистемы: физика, химия, математика. 2023;14(5):554-559. https://doi.org/10.17586/2220-8054-2023-14-5-554-559

For citation:


Lobinsky A.A., Kaneva M.V., Bachina A.K., Tenevich M.I. SILD synthesis of porous manganese oxide nanocoatings as electroactive materials for pseudocapacitors. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(5):554-559. https://doi.org/10.17586/2220-8054-2023-14-5-554-559

Просмотров: 6


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)