Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Синтез порошков на основе манганита лантана в реакциях горения: некоторые аспекты влияния генерирования зарядов в прекурсорах и магнитного поля на формирование свойств

https://doi.org/10.17586/2220-8054-2023-14-5-571-583

Аннотация

На примере синтеза порошков манганита лантана-стронция La0.7Sr0.3MnO3±y в реакциях горения нитрат-органических прекурсоров рассматривается взаимное влияние процесса генерирования электрических зарядов в них и внешнего постоянного магнитного поля на формирование магнитных свойств получаемых объектов. К изученным характеристикам полученных образцов относятся гистерезисные; магнетокалорический, магниторезистивный эффект. Обсуждаются также вопросы, касающиеся процессов формирования протяженных ансамблей наночастиц, с наличием которых связаны функциональные свойства родственных сложнооксидных материалов.

Об авторах

А. А. Остроушко
Ural Federal University Scientific Research Institute of Physics and Applied Mathematics
Россия

Александр Александрович Остроушко



И. Д. Гагарин
Ural Federal University Scientific Research Institute of Physics and Applied Mathematics
Россия

Илья Дмитриевич Гагарин



Е. В. Кудюков
Ural Federal University Scientific Research Institute of Physics and Applied Mathematics
Россия

Егор Владимирович Кудюков



Т. Ю. Жуланова
Ural Federal University Scientific Research Institute of Physics and Applied Mathematics
Россия

Татьяна Юрьевна Жуланова



А. Е. Пермякова
Ural Federal University Scientific Research Institute of Physics and Applied Mathematics
Россия

Анастасия Евгеньевна Пермякова



О. В. Русских
Ural Federal University Scientific Research Institute of Physics and Applied Mathematics
Россия

Ольга Владимировна Русских



Список литературы

1. Sukhorukov Yu. P., Gan’shina E.A., Loshkareva N.N., Kaul A.R., Gorbenko O.Yu., Telegin A.V., et al. Evolution of magnetooptical and transport properties of La1-xAgxMnO3 films depending on silver concentration. J. Exp. Theor. Phys., 2007, 104 (4), P. 569–576.

2. Vasil’ev A.V., Vizgalov V.A., Trusov L.A., Kazin P.E., Tret’yakov Yu.D., Jansen M. Magnetoresistive composites La0:7Sr0:3MnO3- – PMMA. Dokl. Chem., 2012, 445 (1), P. 137–139.

3. Kaul A.R., Gorbenko O.Y., Kamenev A.A. The role of heteroepitaxy in the development of new thin-film oxide-based functional materials. Russ. Chem. Rev., 2004, 73 (9), P. 861–880.

4. Gamzatov A.G., Batdalov A.B., Melnikov O.V., Gorbenko O.Yu. Spin-polarized transport in the manganite La0:85Ag0:15MnO3. Low Temp. Phys., 2009, 35 (3), P. 219–222.

5. Teplykh A.E., Bogdanov S.G., Valiev ´ E.Z., Pirogov A.N., Dorofeev Yu.A., Ostroushko A.A., et al. Size effect in nanocrystalline manganites La1-xAxMnO3 (A=Ag, Sr). Phys. Solid State, 2003, 45 (12), P. 2328–2333.

6. Bubnovskaya L., Belous A., Solopan S., Kovelskaya A., Bovkun L., Podoltsev A., et al. Magnetic Fluid Hyperthermia of Rodent Tumors Using Manganese Perovskite Nanoparticles. J. of Nanoparticles, 2014, 2014, P. 1–9.

7. Zheng L., Chen Y., Wang Y., Wang P., Wang T. Effect of Bi Ions on the Hyperthermia Properties of Hyaluronic Acid-Coated La1-xSrxMnO3 Nanoparticles. NANO, 2020, 15 (01), 2050015.

8. Wu S., Wang Y., Shi D. Positively Charged Magnetic Nanoparticles for Capture of Circulating Tumor Cells from Clinical Blood Samples. Nano LIFE, 2020, 10 (03), 1971001.

9. Estemirova S.K., Mitrofanov V.Y., Uporov S.A., Kozhina G.A. Magnetocaloric properties of Fe-substituted La–Sr-manganites. Solid State Sciences, 2022, 124, 106806.

10. Szewczyk A., Gutowska M., Piotrowski K., Dabrowski B. Direct and specific heat study of magnetocaloric effect in La0:845Sr0:155MnO3. J. Appl. Phys., 2003, 94 (3), P. 1873–1876.

11. Gamzatov A.G., Aliev A.M., Batdalov A.B., Abdulvagidov Sh.B., Mel’nikov O.V., Gorbenko O.Yu. Magnetocaloric effect in silver-doped lanthanum manganites. Tech. Phys. Lett., 2006, 32 (6), P. 471–473.

12. Gamzatov A.G., Khizriev K.Sh., Batdalov A.B., Abdulvagidov Sh.B., Aliev A.M., Melnikov O.V., et al. Critical behavior of the specific heat of manganites La1-xAgxMnO3 (x = 0:1, 0:15, 0:2) near the Curie point. Low Temp. Phys., 2009, 35 (3), P. 214–218.

13. Ifrah S., Kaddouri A., Gelin P., Leonard D. Conventional hydrothermal process versus microwave-assisted hydrothermal synthesis of La1-xAgxMnO3+ (x = 0, 0:2) perovskites used in methane combustion. Comptes Rendus Chimie, 2007, 10 (12), P. 1216–1226.

14. Ostroushko A.A., Shubert E., Makarov A.M., Minyaev V.I., Udilov A.E., Elokhina L.V., et al. Catalytic Activity of Complex-Oxide Perovskitecontaining Compositions in Reactions of Oxidation of CO and Organic Compounds. Russ. J. Appl. Chem., 2003, 76 (8), P. 1253–1259.

15. Kalinina E.G., Pikalova E.Yu. New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: theoretical approaches, experimental solutions and development prospects. Russ. Chem. Rev., 2019, 88 (12), P. 1179–1219.

16. Russkikh O.V., Ivanov D.V., Isupova L.A., Chezganov D.S., Ostroushko A.A. Synthesis, morphology, and activity of La1-xAgxMnO3y catalysts. Kinet. Catal., 2016, 57 (5), P. 712–721.

17. Ostroushko A.A., Russkikh O.V., Kormil’tzev I.I., Kolosov V.Yu., Tsvetkov D.S., Vylkov A.I. Study of nanostructured catalysts on the basis of complex oxides deposited on a carrier. J. Synch. Investig., 2011, 5 (4), P. 677–682.

18. Ostroushko A.A., Russkikh O.V. Catalytic properties of complex oxide coatings on foamed nickel. Russ. J. Appl. Chem., 2015, 88 (10), P. 1582–1588.

19. Ostroushko A.A., Russkikh O.V., Chezganov D.S. Formation and morphology of nickel foam–complex oxide coatings with the perovskite structure. J. Synch. Investig., 2015, 9 (6), P. 1237–1242.

20. Yao G., Wang F., Wang X., Gui K. Magnetic field effects on selective catalytic reduction of NO by NH3 over Fe2O3 catalyst in a magnetically fluidized bed. Energy, 2010, 35 (5), P. 2295–2300.

21. Wang D., Pan J., Zhu D., Guo Z., Yang C., Duan X. Enhanced adsorption of NO onto activated carbon by gas pre-magnetization. Sci. Total Environ., 2022, 830, 154712.

22. Xie Y., Wang M., Wang X., Wang L., Ning P., Ma Y., et al. Magnetic-field-assisted catalytic oxidation of arsine over Fe/HZSM-5 catalyst: Synergistic effect of Fe species and activated surface oxygen. J. Clean. Prod., 2022, 337, 130549.

23. Nikitin V.A. Lekzii po teplotekhnike. Orenburg State University, Orenburg, 2011, 532 p.

24. Cai Y., Zou H., Qu G., Li J., Che L., Hu Y., et al. The mechanism of catalytic oxidation phosphine in liquid phase by transition metal magnetic catalyst in external magnetic field. Environ. Technol. Innov., 2022, 28, 102958.

25. Xu C., Manukyan K.V., Adams R.A., Pol V.G., Chen P., Varma A. One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life Li-ion batteries. Carbon, 2019, 142, P. 51–59.

26. Pikalova E., Kolchugin A., Zakharchuk K., Boiba D., Tsvinkinberg V., Filonova E., et al. Mixed ionic-electronic conductivity, phase stability and electrochemical activity of Gd-substituted La2NiO4+ as oxygen electrode material for solid oxide fuel/electrolysis cells. Int. J. Hydrog., 2021, 46 (32), P. 16932–16946.

27. Khaliullin Sh.M., Koshkina A.A. Influence of fuel on phase formation, morphology, electric and dielectric properties of iron oxides obtained by SCS method. Ceram. Int., 2021, 47 (9), P. 11942–11950.

28. Popkov V.I., Almjasheva O.V., Nevedomskiy V.N., Panchuk V.V., Semenov V.G., Gusarov V.V. Effect of spatial constraints on the phase evolution of YFeO3-based nanopowders under heat treatment of glycine-nitrate combustion products. Ceram. Int., 2018, 44 (17), P. 20906–20912.

29. Tugova E., Yastrebov S., Karpov O., Smith R. NdFeO3 nanocrystals under glycine nitrate combustion formation. J. Cryst. Growth, 2017, 467, P. 88–92.

30. Wang X., Qin M., Fang F., Jia B., Wu H., Qu X., et al. Effect of glycine on one-step solution combustion synthesis of magnetite nanoparticles. J. Alloys Compd., 2017, 719, P. 288–295.

31. Lomanova N.A., Tomkovich M.V., Osipov A.V., Ugolkov V.L., Danilovich D.P., Panchuk V.V., et al. Formation of Bi1-xCaxFeO3- Nanocrystals via Glycine-Nitrate Combustion. Russ. J. Gen. Chem., 2019, 89 (9), P. 1843–1850.

32. Popkov V.I., Almjasheva O.V., Semenova A.S., Kellerman D.G., Nevedomskiy V.N., Gusarov V.V. Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. J. Mater. Sci. Mater. Electron., 2017, 28 (10), P. 7163–7170.

33. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special features of formation of nanocrystalline BiFeO3 via the glycine-nitrate combustion method. Russ. J. Gen. Chem., 2016, 86 (10), P. 2256–2262.

34. Popkov V.I., Almjasheva O.V. Yttrium orthoferrite YFeO3 nanopowders formation under glycine-nitrate combustion conditions. Russ. J. Appl. Chem., 2014, 87 (2), P. 167–171.

35. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Ugolkov V.L., Panchuk V.V., Semenov V.G., et al. Thermal and magnetic behavior of BiFeO3 nanoparticles prepared by glycine-nitrate combustion. J. Nanopart. Res., 2018, 20 (2), 17.

36. Ostroushko A.A., Shubert E., Zhuravleva L.I. Synthesis and physicochemical and catalytic properties of perovskites ABO3y (A = La, Sr, Ag; B = Mn, Co, Fe, Cu, Ti, Mo, V). Russ. J. Appl. Chem., 2000, 73 (8), 1311.

37. Zaboeva E.A., Izotova S.G., Popkov V.I. Glycine-nitrate combustion synthesis of CeFeO3-based nanocrystalline powders. Russ. J. Appl. Chem., 2016, 89 (8), P. 1228–1236.

38. Farhadi S., Zaidi M. Bismuth ferrite (BiFeO3) nanopowder prepared by sucrose-assisted combustion method: A novel and reusable heterogeneous catalyst for acetylation of amines, alcohols and phenols under solvent-free conditions. J. Mol. Catal. A: Chem., 2009, 299 (1–2), P. 18–25.

39. Farbun I.A., Romanova I.V., Khainakov S.A., Kirillov S.A. Properties of nanosized materials on the base of manganese and cerium oxides obtained from the citric solutions. Surface, 2010, 2 (17), 197.

40. Delimaris D., Ioannides T. VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method. Appl. Catal. B, 2008, 84 (1–2), P. 303– 312.

41. Delimaris D., Ioannides T. VOC oxidation over CuO–CeO2 catalysts prepared by a combustion method. Appl. Catal. B, 2009, 89 (1–2), P. 295–302.

42. Rao G.R., Sahu H.R., Mishra B.G. Surface and catalytic properties of Cu–Ce–O composite oxides prepared by combustion method. Colloids Surf. A Physicochem. Eng. Asp., 2003, 220 (1–3), P. 261–269.

43. Mahour L.N., Choudhary H.K., Kumar R., Anupama A.V., Sahoo B. Structural, optical and M¨ossbauer spectroscopic investigations on the environment of Fe in Fe-doped ZnO (Zn1-xFexO) ceramics synthesized by solution combustion method. Ceram. Int., 2019, 45 (18), P. 24625–24634.

44. Komlev A.A., Gusarov V.V. Glycine-nitrate combustion synthesis of nonstoichiometric Mg–Fe spinel nanopowders. Inorg. Mater., 2014, 50 (12), P. 1247–1251.

45. Ostroushko A.A., Russkikh O.V., Gagarin I.D., Filonova E.A. Study of the charge generation in the synthesis of nanosized complex oxides in the combustion reactions of organo-inorganic precursors. Phys. Chem. Aspect. Stud. Clust. Nanostr. Nanomater., 2019, 11, 215.

46. Chick L.A., Pederson L.R., Maupin G.D., Bates J.L., Thomas L.E., Exarhos G.J. Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater. Lett., 1990, 10 (1–2), P. 6–12.

47. Popkov V.I., Almjasheva O.V., Nevedomskiy V.N., Sokolov V.V., Gusarov V.V. Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycine-nitrate combustion. Nanosystems: Phys. Chem. Math., 2015, 6 (6), P. 866–874.

48. Chiu T.-W., Yu B.-S., Wang Y.-R., Chen K.-T., Lin Y.-T. Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process. J. Alloys Compd., 2011, 509 (6), P. 2933–2935.

49. Enikeeva M.O., Kenges K.M., Proskurina O.V., Danilovich D.P., Gusarov V.V. Influence of Hydrothermal Treatment Conditions on the Formation of Lanthanum Orthophosphate Nanoparticles of Monazite Structure. Russ. J. Appl. Chem., 2020, 93 (4), P. 540–548.

50. Khaliullin Sh.M., Bamburov V.G., Russkikh O.V., Ostroushko A.A., Zhuravlev V.D. CaZrO3 synthesis in combustion reactions with glycine. Dokl. Chem., 2015, 461 (2), P. 93–95.

51. Smirnova M.N., Goeva L.V., Simonenko N.P., Beresnev E.N., Kop’eva M.A., Ketsko V.A. Gel formation specifics in the synthesis of Mg(Fe0:8Ga0:2)2O4 by the glycine–nitrate method. Russ. J. Inorg. Chem., 2016, 61 (10), P. 1301–1306.

52. Zhuravlev V.D., Bamburov V.G., Beketov A.R., Perelyaeva L.A., Baklanova I.V., Sivtsova O.V., et al. Solution combustion synthesis of -Al2O3 using urea. Ceram. Int., 2013, 39 (2), P. 1379–1384.

53. Khaliullin Sh.M., Zhuravlev V.D., Bamburov V.G. Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Thermodynamic aspects. Int. J. Self-Propag. High-Temp. Synth., 2016, 25 (3), P. 139–148.

54. Ostroushko A.A., Mogil’nikov Y.V., Ostroushko I.P. Synthesis of Molybdenum-and Vanadium-Containing Mixed Oxides in Polymer-Salt Systems. Inorg. Mater., 2000, 36 (12), P. 1256–1263.

55. Popkov V.I., Almjasheva O.V., Schmidt M.P., Izotova S.G., Gusarov V.V. Features of nanosized YFeO3 formation under heat treatment of glycine– nitrate combustion products. Russ. J. Inorg. Chem., 2015, 60 (10), P. 1193–1198.

56. Ostroushko A.A., Russkikh O.V. Oxide material synthesis by combustion of organic-inorganic compositions. Nanosystems: Phys. Chem. Math., 2017, 8 (4), P. 476–502.

57. Ostroushko A.A., Maksimchuk T.Yu., Permyakova A.E., Russkikh O.V. Determinative Factors for the Thermochemical Generation of Electric Charges upon Combustion of Nitrate–Organic Precursors for Materials Based on Lanthanum Manganite and Cerium Dioxide. Russ. J. Inorg. Chem., 2022, 67 (6), P. 799–809.

58. Ostroushko A.A., Zhulanova T.Yu., Kudukov E.V., Gagarin I.D., Russkikh O.V. Lanthanum manganite nanopowders synthesis via combustion reactions under the influence of electromagnetic field. Phys. Chem. Aspect. Stud. Clust. Nanostr. Nanomater., 2022, (14), P. 820–828.

59. Ostroushko A.A., Russkikh O.V., Maksimchuk T.Yu. Charge generation during the synthesis of doped lanthanum manganites via combustion of organo-inorganic precursors. Ceram. Int., 2021, 47 (15), P. 21905–21914.

60. Filonova E.A., Russkikh O.V., Skutina L.S., Vylkov A.I., Maksimchuk T.Yu., Ostroushko A.A. Sr2Ni0:7Mg0:3MoO6-: Correlation between synthesis conditions and functional properties as anode material for intermediate-temperature SOFCs. Int. J. Hydrog., 2021, 46 (72), P. 35910–35922.

61. Ostroushko A.A., Sennikov M.Yu. Thermochemical charge generation in polymer-salt films. Russ. J. Inorg. Chem., 2005, 50 (6), P. 933–936.

62. Ostroushko A.A., Sennikov M.Yu. Thermochemical charge generation in polymer-salt films as a function of temperature. Russ. J. Inorg. Chem., 2008, 53 (8), P. 1172–1175.

63. Filonova E.A., Russkikh O.V., Skutina L.S., Kochetova N.A., Korona D.V., Ostroushko A.A. Influence of synthesis conditions on phase formation and functional properties of prospective anode material Sr2Ni0:75Mg0:25MoO6-. J. Alloys Compd., 2018, 748, P. 671–678.

64. Martirosyan K.S., Filimonov I.A., Luss D. Electric-field generation by gas-solid combustion. AIChE J., 2004, 50 (1), P. 241–248.

65. Markov A.A., Filimonov I.A., Poletaev A.V., Vadchenko S.G., Martirosyan K.S. Generation of charge carriers during combustion synthesis of sulfides. Int. J. Self-Propag. High-Temp. Synth., 2013, 22 (2), P. 69–76.

66. Martirosyan K.S., Setoodeh M., Luss D. Electric-field generated by the combustion of titanium in nitrogen. J. Appl. Phys., 2005, 98 (5), 054901.

67. Setoodeh M., Martirosyan K.S., Luss D. Electrical pulse formation during high temperature reaction between Ni and Al. J. Appl. Phys., 2006, 99 (8), 084901.

68. Filimonov I., Luss D. Formation of electric potential during the oxidation of a metal particle. AIChE J., 2004, 50 (9), P. 2287–2296.

69. Filimonov I., Kidin N. Formation of charged defects during the nitridation of a metal particle. Proc. Combust. Inst., 2007, 31 (2), P. 1991–1999.

70. Kuznetsov M.V., Belousova O.V., Morozov Yu.G., Schipakin S.Yu. Electromotive force of combustion in the periodical table. ISJAEE, 2014, 20 (160), 38.

71. Martirosyan K.S., Filimonov I.A., Nersesyan M.D., Luss D. Electric Field Formation during Combustion of Single Metal Particles. J. Electrochem. Soc., 2003, 150 (5), P. 9–16.

72. Gubin S.P., Koksharov Y.A., Khomutov G.B., Yurkov G.Y. Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev., 2005, 74 (6), P. 489–520.

73. Zhang N., Yang W., Ding W., Xing D., Du Y. Grain size-dependent magnetism in fine particle perovskite, La1-xSrxMnOz. Solid State Communications, 1999, 109 (8), P. 537–542.

74. Walker D.A., Kowalczyk B., De La Cruz M.O., Grzybowski B.A. Electrostatics at the nanoscale. Nanoscale, 2011, 3 (4), P. 1316–1344.

75. Genz U., Aguanno B.D., Mewis J. Structure of Sterically Stabilized Colloids. Langmuir, 1994, 10, P. 2206–2212.

76. Shankar A., Safronov A.P., Mikhnevich E.A., Beketov I.V., Kurlyandskaya G.V. Ferrogels based on entrapped metallic iron nanoparticles in a polyacrylamide network: extended Derjaguin–Landau–Verwey–Overbeek consideration, interfacial interactions and magnetodeformation. Soft Matter, 2017, 13 (18), P. 3359–3372.

77. Skomski R. Nanomagnetics. J. Phys.: Condens. Matter, 2003, 15 (20), R841–R896.

78. Ivanov A.O., Zubarev A. Chain Formation and Phase Separation in Ferrofluids: The Influence on Viscous Properties. Materials, 2020, 13 (18), 3956.

79. Mikhnevich E.A., Chebotkova P.D., Safronov A.P. Synthesis and Study of Mechanical Properties of Polyelectrolyte Ferrogels Based on Strontium Ferrite Particles. Inorg. Mater. Appl. Res., 2020, 11 (4), P. 855–860.

80. Sanchez-Dominguez Ed. M., Rodriguez-Abreu C. Nanocolloids: a meeting point for scientists and technologists. Elsevier, Amsterdam, 2016, 514 p.

81. Lim J.K., Majetich S.A., Tilton R.D. Stabilization of Superparamagnetic Iron Oxide Core-Gold Shell Nanoparticles in High Ionic Strength Media. Langmuir, 2009, 25 (23), P. 13384–13393.

82. Almjasheva O.V., Popkov V.I., Proskurina O.V., Gusarov V.V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosystems: Phys. Chem. Math., 2022, 13 (2), P. 164–180.

83. Almjasheva O.V., Lomanova N.A., Popkov V.I., Proskurina O.V., Tugova E.A., Gusarov V.V. The minimum size of oxide nanocrystals: phenomenological thermodynamic vs crystal-chemical approaches. Nanosystems: Phys. Chem. Math., 2019, 10 (4), P. 428–437.

84. Kantorovich S.S., Ivanov A.O., Rovigatti L., Tavares J.M., Sciortino F. Temperature-induced structural transitions in self-assembling magnetic nanocolloids. Phys. Chem. Chem. Phys., 2015, 17 (25), P. 16601–16608.

85. Urusova N., Kumar M.R., Semkin M., Filonova E., Kratochvilova M., Neznakhin D., et al. Crystal structure and magnetic properties of Sr2Ni1-xMgxMoO6 (x = 0, 0:25, 0:5, and 0:75) polycrystals. Solid State Sci., 2020, 99, 106008.

86. Ostroushko A.A. Physico-chemical bases of obtaining solid-phase materials for electronic engineering and catalysis: students guide. UrFU, Ekaterinburg, 2011, 160 p. (in Russian).


Рецензия

Для цитирования:


Остроушко А.А., Гагарин И.Д., Кудюков Е.В., Жуланова Т.Ю., Пермякова А.Е., Русских О.В. Синтез порошков на основе манганита лантана в реакциях горения: некоторые аспекты влияния генерирования зарядов в прекурсорах и магнитного поля на формирование свойств. Наносистемы: физика, химия, математика. 2023;14(5):571-583. https://doi.org/10.17586/2220-8054-2023-14-5-571-583

For citation:


Ostroushko A.A., Gagarin I.D., Kudyukov E.V., Zhulanova T.Yu., Permyakova A.E., Russkikh O.V. Synthesis of lanthanum manganite powders via combustion reactions: some aspects of the influence of magnetic field and charge generation in precursors on the formation of properties. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(5):571-583. https://doi.org/10.17586/2220-8054-2023-14-5-571-583

Просмотров: 8


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)