Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Evaluation of the electrochemical active surface area for carbon felt and nanostructured Ni coatings as electrocatalysts for hydrogen evolution reaction

https://doi.org/10.17586/2220-8054-2023-14-5-590-600

Abstract

This study is devoted to the evaluation of electrochemical active surface area (ECSA) for carbon felt used in various fields of electrochemical technology. For the evaluation, we used techniques based on Faraday’s law, the Randles–Sevcik equation and the calculation of the electric double layer capacitance in the electrolyte with different pH value. The measurement results are consistent with each other and for neutral, acidic and alkaline medium, the ECSA value are 20 – 30, 30 – 40 and 50 – 90 cm2 per 1 cm2 of geometric surface, respectively. Based on the results, the synthesis of nanostructured nickel coatings on carbon felt with prior electrochemical activation was performed. The pre-treatment in 1M KOH vs 1 M Na2SO4 reduces the crystallite size from 26 to 15 nm and increases the ECSA from 133 to 700 cm2 per 1 cm2 of geometric surface. These changes cause an improvement in other electrocatalytic features for hydrogen evolution reaction.

About the Authors

D. S. Dmitriev
Ioffe Institute
Russian Federation

Dmitry S. Dmitriev

194021 Saint Petersburg, 26 Polytechnicheskaya street



M. I. Tenevich
Ioffe Institute
Russian Federation

Maksim I. Tenevich

194021 Saint Petersburg, 26 Polytechnicheskaya street



References

1. Huong Le T.X., Bechelany M., Cretin M. Carbon felt based-electrodes for energy and environmental applications: A review. Carbon N. Y., 2017, 122, P. 564–591.

2. Uan J.Y., Chen Y.J., Hsu Y.H., Arpornwichanop A., Chen Y.S. Deposition of Li/Al layered double hydroxides on the graphite felts for the performance improvement of an all-vanadium redox flow battery. Mater. Today Commun., 2021, 27, 102280.

3. Kim M., Park J., Yeo G., Ko M., Jang H. Designing CNT-implanted graphite felt as a sustainable electron network for long-cycling of vanadium redox flow batteries. Carbon N. Y., 2023, 206, P. 1–6.

4. Abbas S., Lee H., Hwang J., Mehmood A., Shin H.-J., Mehboob S., Lee J.Y., Ha H.Y. A novel approach for forming carbon nanorods on the surface of carbon felt electrode by catalytic etching for high-performance vanadium redox flow battery. Carbon N. Y., 2018, 128, P. 31–37.

5. Moghim M.H., Eqra R., Babaiee M., Zarei-Jelyani M., Loghavi M.M. Role of reduced graphene oxide as nano-electrocatalyst in carbon felt electrode of vanadium redox flow battery. J. Electroanal. Chem., 2017, 789, P. 67–75.

6. Anarghya D., Anantha M.S., Venkatesh K., Santosh M.S., Priya M.G., Muralidhara H.B. Bermuda grass derived nitrogen-doped carbon as electrocatalyst in graphite felt electrode to increase the efficiency of all-iron redox flow batteries. J. Electroanal. Chem., 2020, 878, 114577.

7. Le´on M.I., Arenas L.F., Walsh F.C., Nava J.L. Simulation of a vanadium-cerium redox flow battery incorporating graphite felt electrodes. J. Electroanal. Chem., 2021, 903, 115847.

8. Jin C.-B., Shi P., Zhang X.-Q., Huang J.Q. Advances in carbon materials for stable lithium metal batteries. New Carbon Mater., 2022, 37, P. 1–24.

9. Wang Y., Zhu M., Liu H., Zhang Y., Wu K., Wang G., Wu C. Carbon-based current collector materials for sodium metal anodes. New Carbon Mater., 2022, 37, P. 93–108.

10. Zhang J., Wang W., Shi R., Wang W., Wang S., Kang F., Li B. Three-dimensional carbon felt host for stable sodium metal anode. Carbon N. Y., 2019, 155, P. 50–55.

11. Watson V.G., Haynes Z.D., Telama W., Yeboah Y.D., Weatherspoon M.H., Zheng J.P., Kalu E.E. Electrochemical performance of heat treated SnO2–SnCu@C-Felt anode materials for lithium ion batteries. Surfaces and Interfaces, 2018, 13, P. 224–232.

12. Gong Y., Xue Y. Carbon nanomaterials for stabilizing zinc anodes in zinc-ion batteries. New Carbon Mater., 2023, 38, P. 438–454.

13. Wu M., Tian X., Yang W., Guo B., Guo J. Co nanoparticles embedded in wheat-like porous carbon nanofibers as bifunctional electrocatalysts for rechargeable zinc-air batteries. Electrochim. Acta, 2022, 411, 140090.

14. Chen W., Liu X., Wu J., Wang Q., Zhang Y., Yan S., Hou P., Luo S. Electrospun Fe1􀀀xS@ nitrogen-doped carbon fibers as anode material for sodium-ion batteries. J. Electroanal. Chem., 2023, 929, 117095.

15. Peng J., Luo J., LiW., Zeng P.,Wu Z.,Wang Y., Li J., Shu H.,Wang X. Insight into the performance of the mesoporous structure SiOx nanoparticles anchored on carbon fibers as anode material of lithium-ion batteries. J. Electroanal. Chem., 2021, 880, 114798.

16. Wu M., Zhao X., Gao J., Guo J., Xiao J., Chen R. Multifunctional boron-doped carbon fiber electrodes synthesized by electrospinning for supercapacitors, dye-sensitized solar cells, and photocapacitors. Surfaces and Interfaces, 2022, 31, 101983.

17. Sawadsitang S., Duangchuen T., Karaphun A., Putjuso T., Kumnorkaew P., Swatsitang E. Synthesis, characterization and electrochemical properties of activated coconut fiber carbon (ACFC) and CuO/ACFC nanocomposites for applying as electrodes of supercapacitor devices. Surfaces and Interfaces, 2021, 25, 101174.

18. Ye D., Yu Y., Tang J., Liu L., Wu Y. Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Nanoscale, 2016, 8, P. 10406–10414.

19. Rodrigues A.C., da Silva E.L., Oliveira A.P.S., Matsushima J.T., Cu˜na A., Marcuzzo J.S., Gonc¸alves E.S., Baldan M.R. High-performance supercapacitor electrode based on activated carbon fiber felt/iron oxides. Mater. Today Commun., 2019, 21, 100553.

20. Wang S., Liu Y., Wang Q., Liu P., Li L., Wang T. Fabrication of self-doped aramid-based porous carbon fibers for the high-performance supercapacitors. J. Electroanal. Chem., 2022, 923, P. 116829.

21. Zhang L., Yu X., Zhu P., Sun R., Wong C. Surface functional treatment of carbon fiber with ultra wide potential range in neutral electrolyte for high performance supercapacitor. J. Electroanal. Chem., 2020, 876, 114478.

22. Toyoda M., Inagaki M. Carbon materials for solar steam-generation. Carbon N. Y., 2023, 214, 118373.

23. Hidalgo D., Tommasi T., Bocchini S., Chiolerio A., Chiodoni A., Mazzarino I., Ruggeri B. Surface modification of commercial carbon felt used as anode for Microbial Fuel Cells. Energy, 2016, 99, P. 193–201.

24. Zhuang H., Yang F. Vanadium metal-organic framework derived 2D hierarchical VO2 nanosheets grown on carbon cloth for advanced flexible energy storage devices. Surfaces and Interfaces, 2021, 25, 101232.

25. Xu H., Zhang M., Ma Z., Zhao N., Zhang K., Song H., Li X. Improving electron transport efficiency and power density by continuous carbon fibers as anode in the microbial fuel cell. J. Electroanal. Chem., 2020, 857, 113743.

26. Chen S., Tang L., Feng H., Zhou Y., Zeng G., Lu Y., Yu J., Ren X., Peng B., Liu X. Carbon felt cathodes for electro-Fenton process to remove tetracycline via synergistic adsorption and degradation. Sci. Total Environ., 2019, 670, P. 921–931.

27. Koca M.B., G¨um¨us¸g¨oz C¸ elik G., Kardas¸ G., Yazıcı B. NiGa modified carbon-felt cathode for hydrogen production. Int. J. Hydrogen Energy, 2019, P. 14157–14163.

28. Fan X., Ma Y., Sun A., Zhang X., Tang L., Guo J. Engineering heterogeneous nickel-iron oxide/iron phosphate on P, N co-doped carbon fibers for efficient oxygen evolution reaction in neutral and alkaline solutions. Surfaces and Interfaces, 2021, 25, 101193.

29. Jin Y., Zhang T., Pan N., Wang S., Zhang B., Zhu X., Hao Y., Wang X., Song L., Zhang M. Surface functionalization of carbon cloth with conductive Ni/Fe-MOFs for highly efficient oxygen evolution. Surfaces and Interfaces, 2022, 33, 102294.

30. Lee D.J., Kumar G.M., Sekar S., Ganesh V., Jeon H.C., Kim D.Y., Kang T.W., Ilanchezhiyan P. Re1􀀀xNixS2 nanosheets for high efficient electrocatalytic hydrogen evolution functions. Surfaces and Interfaces, 2023, 40, 103014.

31. Dmitriev D.S., Tenevich M.I. Electrocatalytic performance of nickel coating on carbon felt with silver particles inclusions. J. Taiwan Inst. Chem. Eng., 2022, 141, 104591.

32. Ifires M., Addad A., Barras A., Hadjersi T., Chegroune R., Szunerits S., Boukherroub R., Amin M.A. Cathodic pre-polarization studies on the carbon felt/KOH interface: An efficient metal-free electrocatalyst for hydrogen generation. Electrochim. Acta, 2021, 375, 137981.

33. Garc´ıa-Rodr´ıguez O., Banuelos J.A., El-Ghenymy A., God´ınez L.A., Brillas E., Rodr´ıguez-Valadez F.J. Use of a carbon felt–iron oxide air-diffusion cathode for the mineralization of Malachite Green dye by heterogeneous electro-Fenton and UVA photoelectro-Fenton processes. J. Electroanal. Chem., 2016, 767, P. 40–48.

34. Liu L., Zhang D., Duan D., Li Y., Yuan Q., Chen L., Liu S. In situ fabrication of 3D self-supporting cobalt phosphate-modified graphite felt electrocatalysts for oxygen evolution reaction in neutral solution. J. Electroanal. Chem., 2020, 862, 114031.

35. Zhang G., Yu J., Su C., Di C., Ci S., Mou Y., Fu Y., Qiao K. The effect of annealing on the properties of copper-coated carbon fiber. Surfaces and Interfaces, 2023, 37, 102630.

36. Dmitriev D.S., Martinson K.D., Popkov V.I. Electrochemical template synthesis of copper hollow microtubes with dendritic surface and advanced HER performance. Mater. Lett., 2021, 305, 130808.

37. Zhou Q., Li G., Qu Y., Zhou S., Xu W., Gao X., Yang F., Li R. Preparation and antioxidation of Cu–Sn composite coating on the surface of Cu-coated carbon fibers. Surfaces and Interfaces, 2022, 31, 102016.

38. Jak´obczyk P., Skowierzak G., Kaczmarzyk I., Nadolska M., Wcislo A., Lota K., Bogdanowicz R., Ossowski T., Rostkowski P., Lota G., Ryl J. Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments. Chemosphere, 2022, 304, 135381.

39. Dmitriev D.S., Tenevich M.I., Lobinsky A.A., Popkov V.I. Coaxial structures based on NiO/Ni@Carbon felt: Synthesis features, electrochemical behavior and application perspectives. J. Electroanal. Chem., 2022, 911, 116216.

40. Zhou H., Zhang H., Zhao P., Yi B. A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery. Electrochim. Acta, 2006, 51, P. 6304–6312.

41. Jing M., Xu Z., Fang D., Fan X., Liu J., Yan C. Improvement of the Battery Performance of Vanadium Flow Battery by Enhancing the Specific Surface Area of the Carbon Felt Electrodes: II. Digging Effect. J. Electrochem. Soc., 2021, 168, 030539.

42. Su Y., Chen N., Ren H., Guo L., Li Z., Wang X. Preparation and Properties of Indium Ion Modified Graphite Felt Composite Electrode. Front. Chem., 2022, 10, P. 1–7.

43. Popat Y., Trudgeon D., Zhang C., Walsh F.C., Connor P., Li X. Carbon Materials as Positive Electrodes in Bromine-Based Flow Batteries. Chempluschem, 2022, 87.

44. Jiang H.R., Shyy W., Wu M.C., Zhang R.H., Zhao T.S. A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries. Appl. Energy, 2019, 233–234, P. 105–113.

45. Gautam R.K., Kapoor M., Verma A. Tactical Surface Modification of a 3D Graphite Felt as an Electrode of Vanadium Redox Flow Batteries with Enhanced Electrolyte Utilization and Fast Reaction Kinetics. Energy & Fuels, 2020, 34, P. 5060–5071.

46. Noh T.H., Kim M.Y., Kim D.H., Yang S.H., Lee J.H., Park H.S., Noh H.S., Lee M.S., Kim H.S. Electrochemical studies of carbon felt electrode modified under airless conditions for redox flow batteries. J. Electrochem. Sci. Technol., 2017, 8, P. 155–161.

47. Zhou X., Zhang X., Lv Y., Lin L., Wu Q. Nano-catalytic layer engraved carbon felt via copper oxide etching for vanadium redox flow batteries. Carbon N. Y., 2019, 153, P. 674–681.

48. Gonz´alez-Garc´ıa J., Bonete P., Exp´osito E., Montiel V., Aldaz A., Torregrosa-Maci´a R. Characterization of a carbon felt electrode: structural and physical properties. J. Mater. Chem., 1999, 9, P. 419–426.

49. Wang Y., Lin B. Enhancement of performance for graphite felt modified with carbon nanotubes activated by KOH as Cathode in electro-fenton systems. J. Appl. Biomater. Funct. Mater., 2021, 19, 228080002110053.

50. Rabbow T.J., Whitehead A.H. Deconvolution of electrochemical double layer capacitance between fractions of active and total surface area of graphite felts. Carbon N. Y., 2017, 111, P. 782–788.

51. Kato K., Kano K., Ikeda T. Electrochemical Characterization of Carbon Felt Electrodes for Bulk Electrolysis and for Biocatalyst-Assisted Electrolysis. J. Electrochem. Soc., 2000, 147, 1449.


Review

For citations:


Dmitriev D.S., Tenevich M.I. Evaluation of the electrochemical active surface area for carbon felt and nanostructured Ni coatings as electrocatalysts for hydrogen evolution reaction. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(5):590-600. https://doi.org/10.17586/2220-8054-2023-14-5-590-600

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)