Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Growth of nanotextured thin films of GaInAsP and GaInAsSbBi solid solutions on GaP substrates by pulsed laser deposition

https://doi.org/10.17586/2220-8054-2023-14-5-601-605

Abstract

GaInAsP and GaInAsSbBi solid solutions were grown on GaP (111) substrates by pulsed laser deposition using a laser fluence of 2.3 J/cm2. Energy Dispersive X-ray microanalysis, atomic force microscopy, and Raman spectroscopy were used for analysis of the elemental composition and study of the surface morphology and chemical bonds of the obtained solid solutions. It was found that at constant growth temperature and the fluence of 2.3 J/cm2, the elemental composition of the film has a significant effect on the growth kinetics. Surface-active elements (Sb and Bi) in the composition of the solid solution lead to a change in the surface diffusion of In and Ga, which is accompanied by a decrease in roughness. It was established that the films growth in the Volmer–Weber mode. The grown films are nanotextured with a predominant orientation in the direction of growth (111).

About the Authors

A. S. Pashchenko
Federal Research Center Southern Scientific Center of the Russian Academy of Sciences; North Caucasian Federal University
Russian Federation

Alexander S. Pashchenko

Chekhov Ave., 41, Rostov-on-Don, 344006

Pushkina st., 1, Stavropol, 355017



O. V. Devitsky
Federal Research Center Southern Scientific Center of the Russian Academy of Sciences; North Caucasian Federal University
Russian Federation

Oleg V. Devitsky

Chekhov Ave., 41, Rostov-on-Don, 344006

Pushkina st., 1, Stavropol, 355017



L. S. Lunin
Federal Research Center Southern Scientific Center of the Russian Academy of Sciences; North Caucasian Federal University
Russian Federation

Leonid S. Lunin

Chekhov Ave., 41, Rostov-on-Don, 344006

Pushkina st., 1, Stavropol, 355017



M. L. Lunina
Federal Research Center Southern Scientific Center of the Russian Academy of Sciences
Russian Federation

Marina L. Lunina

Chekhov Ave., 41, Rostov-on-Don, 344006



O. S. Pashchenko
Federal Research Center Southern Scientific Center of the Russian Academy of Sciences
Russian Federation

Olga S. Pashchenko

Chekhov Ave., 41, Rostov-on-Don, 344006



E. M. Danilina
Federal Research Center Southern Scientific Center of the Russian Academy of Sciences
Russian Federation

Eleonora M. Danilina

Chekhov Ave., 41, Rostov-on-Don, 344006



References

1. Ogugua S.N., Ntwaeaborwa O.M., Swart H.C. Latest Development on Pulsed Laser Deposited Thin Films for Advanced Luminescence Applications. Coatings, 2020, 10 (11), 1078.

2. Li G., Wang W., Yang W., Wang H. Epitaxial growth of group III-nitride films by pulsed laser deposition and their use in the development of LED devices. Surface Science Reports, 2015, 70 (3), P. 380–423.

3. Vanalakar S.A., Agawane G.L., Shin S.W., Suryawanshi M.P., Gurav K.V., Jeon K.S., Patil P.S., Jeong C.W., Kim J.Y., Kim J.H. A review on pulsed laser deposited CZTS thin films for solar cell applications. J. of Alloys and Compounds, 2015, 619, P. 109–121.

4. Ettlinger R.B., Cazzaniga A., Canulescu S., Pryds N. Schou J. Pulsed laser deposition from ZnS and Cu2SnS3 multicomponent targets. Applied Surface Science, 2015, 336, P. 385–390.

5. Pashchenko A.S., Devitsky O.V., Lunin L.S., Kasyanov I.V., Pashchenko O.S., Nikulin D.A. Structure and morphology of GaInAsP solid solutions on GaAs substrates grown by pulsed laser deposition. Thin Solid Films, 2022, 743, 139064.

6. Chen S.C., Hsieh D.H., Jiang H., Liao Y.K., Lai F.I., Chen C.H., Luo C.W., Juang J.Y., Chueh Y.L.,Wu K.H., Kuo H.C. Growth and characterization of Cu(In,Ga)Se2 thin films by nanosecond and femtosecond pulsed laser deposition. Nanoscale Research Letters, 2014, 9, 280.

7. Pashchenko A.S., Devitsky O.V., Lunin L.S., Lunina M.L., Pashchenko O.S. Structural properties of GaInAsSbBi solid solutions grown on GaSb substrates. Technical Physics Letters, 2022, 48 (5), P. 52–55.

8. Oshima R., France R.M., Geisz J.F., Norman A.G., Steiner M.A. Growth of lattice-matched GaInAsP grown on vicinal GaAs(001) substrates within the miscibility gap for solar cells. J. of Crystal Growth, 2017, 458, P. 1–7.

9. Carrasco R.A., Morath C.P., Logan J.V., Woller K.B., Grant P.C., Orozco H., Milosavljevic M.S., Johnson S.R., Balakrishnan G., Webster P.T. Photoluminescence and minority carrier lifetime of quinary GaInAsSbBi grown on GaSb by molecular beam epitaxy. Applied Physics Letters, 2022, 120 (3), 031102.

10. Alberi K., Wu J., Walukiewicz W., Yu K.M., Dubon O.D., Watkins S.P., Wang C.X., Liu X., Cho Y.-J., Furdyna J. Valence-band anticrossing in mismatched III–V semiconductor alloys. Physical Review B, 2007, 75, 045203.

11. Neˇcas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis. Open Physics, 2012, 10 (1), P. 181–188.

12. Zvonkov B.N., Karpovich I.A., Baidus N.V., Filatov D.O., Morozov S.V., Gushina Yu.Yu. Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs. Nanotechnology, 2000, 11 (4), P. 221–226.

13. Devenyi G.A., Woo S.Y., Ghanad-Tavakoli S., Hughes R.A., Kleiman R.N., Botton G.A., Preston J.S. The role of vicinal silicon surfaces in the formation of epitaxial twins during the growth of III–V thin films. J. of Applied Physics, 2011, 110 (12), 124316.

14. Fang S.F., Adomi K., Iyer S., Morkoc¸ H., Zabel H., Choi C., Otsuka N. Gallium arsenide and other compound semiconductors on silicon. J. of Applied Physics, 1990, 68 (7), R31–R58.

15. Kim Y.H., Noh Y.K., Kim M.D., Oh J.E., Chung K.S. Transmission electron microscopy study of the initial growth stage of GaSb grown on Si (001) substrate by molecular beam epitaxy method. Thin Solid Films, 2010, 518 (8), P. 2280–2284.

16. Gudovskikh A.S., Uvarov A.V., Morozov I.A., Baranov A.I., Kudryashov D.A., Zelentsov K.S., Bukatin A.S., Kotlyar K.P. Low temperature plasma enhanced deposition approach for fabrication of microcrystalline GaP/Si superlattice. J. of Vacuum Science & Technology A, 2018, 36 (2), 02D408.

17. Vorl´ıcek V., Moiseev K.D., Mikhailova M.P., Yakovlev Yu.P., Hulicius E., ˇSimecek T. Raman Scattering Study of Type II GaInAsSb/InAs Heterostructures. Crystal Research & Technology, 2002, 37 (2–3), P. 259–267.

18. Bedel E., Landa G., Carles R., Redoules J.P., Renucci J.B. Raman investigation of the InP lattice dynamics. J. of Physics C: Solid State Physics, 1986, 19, 1471.

19. Frost F., Lippold G., Schindler A., Bigl F. Ion beam etching induced structural and electronic modification of InAs and InSb surfaces studied by Raman spectroscopy. J. of Applied Physics, 1999, 85 (12), P. 8378–8385.

20. Verma P., Oe K., Yamada M., Harima H., Herms M., Irmer G. Raman studies on GaAs1􀀀xBix and InAs1􀀀xBix. J. of Applied Physics, 2001, 89 (3), P. 1657–1663.

21. Yue L., Wang P., Wang K., Wu X., Pan W., Li Y., Song Y., Gu Y., Gong Q., Wang Sh., Ning J., Xu Sh. Novel InGaPBi single crystal grown by molecular beam epitaxy. Applied Physics Express, 2015, 8 (4), 041201.


Review

For citations:


Pashchenko A.S., Devitsky O.V., Lunin L.S., Lunina M.L., Pashchenko O.S., Danilina E.M. Growth of nanotextured thin films of GaInAsP and GaInAsSbBi solid solutions on GaP substrates by pulsed laser deposition. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(5):601-605. https://doi.org/10.17586/2220-8054-2023-14-5-601-605

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)