Preview

Наносистемы: физика, химия, математика

Расширенный поиск

О собственных значениях и виртуальных уровнях двухчастичного гамильтониана на $d$-мерной решетке

https://doi.org/10.17586/2220-8054-2023-14-3-295-303

Аннотация

Двухчастичный оператор Шредингера $h_\mu(k),$ $k\in\mathbb{T}^d$ (где $\mu>0$, $\mathbb{T}^d$ -- $d$-мерный тор), ассоциированный с гамильтонианом $\mathrm{h}$ системы двух квантовых частиц, движущихся на $d$-мерной решетке, рассматривается как возмущение свободного гамильтониана $h_0(k)$ потенциальным оператором $\mu{\bf v}$ ранга $3^d$. Условия существования собственных значений и виртуальных уровней оператора $h_\mu(k),$ подробно исследованы относительно энергии взаимодействия частиц $\mu$ и полный квазиимпульс системы двух частиц $k\in\mathbb{T}^d$.

Об авторах

М. Э. Муминов
Samarkand State University; V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences
Узбекистан


А. М. Хуррамов
Samarkand State University
Узбекистан


И. Н. Бозоров
Samarkand State University; V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences
Узбекистан


Список литературы

1. Bloch I., Dalibard J., and Nascimbene S. Quantum simulations with ultracold quantum gases, Nature Physics, 2012, 8, P. 267–276.

2. Jaksch D., Zoller P. The cold atom Hubbard toolbox, Ann. Phys., 2005, 315, P. 52–79.

3. Lewenstein M., Sanpera A., Ahufinger V. Ultracold Atoms in Optical Lattices: Simulating Quantum Many-body Systems, Oxford University Press, Oxford, 2012.

4. Gullans M., Tiecke T.G., Chang D.E., Feist J., Thompson J.D., Cirac J.I., Zoller P., Lukin M.D. Nanoplasmonic Lattices for Ultracold Atoms. Phys. Rev. Lett., 2012, 109, P. 235309.

5. Hecht E. Optics. Addison-Wesley, Reading, MA. 1998.

6. Murphy B., Hau L.V. Electro-optical nanotraps for neutral atoms. Phys. Rev. Lett., 2009, 102, P. 033003.

7. N.P. de Leon, Lukin M.D., and Park H. Quantum plasmonic circuits. IEEE J. Sel. Top. Quantum Electron., 2012, 18, P. 1781–1791.

8. Bagmutov A.S., Popov I.Y. Window-coupled nanolayers: window shape influence on one-particle and two-particle eigenstates. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11(6), P. 636–641.

9. Hiroshima F., Sasaki I., Shirai T., Suzuki A. Note on the spectrum of discrete Schr¨odinger operators. Journal of Math-for-Industry, 2012, 4, P. 105–108.

10. Higuchi Y., Matsumot T., Ogurisu O. On the spectrum of a discrete Laplacian on Z with finitely supported potential. Linear and Multilinear Algebra, 2011, 8, P. 917–927.

11. Albeverio S., Lakaev S.N., Makarov K.A., Muminov Z.I. The Threshold effects for the two-particle Hamiltonians. Communications in Mathematical Physics, 2006, 262, P. 91–115.

12. Muminov M.I. Positivity of the two-particle Hamiltonian on a lattice. Theoret. and Math. Phys., 2007, 153(3), P. 1671–1676.

13. Muminov M.E., Khurramov A.M. Spectral properties of a two-particle Hamiltonian on a lattice. Theor. Math. Phys., 2013, 177(3), P. 482–496.

14. Muminov M.E., Khurramov A.M. Multiplicity of virtual levels at the lower edge of the continuous spectrum of a two-particle Hamiltonian on a lattice. Theor. Math. Phys., 2014, 180(3), P. 329–341.

15. Bozorov I.N., Khurramov A.M. On the number of eigenvalues of the lattice model operator in one-dimensional case. Lobachevskii Journal of Mathematics, 2022, 43(2), P. 353–365.

16. Muminov M.E., Khurramov A.M. Spectral properties of two particle Hamiltonian on one-dimensional lattice. Ufa Math. Jour., 2014, 6(4), P. 99–107.

17. Muminov M.I., Khurramov A.M. Spectral properties of a two-particle hamiltonian on a d-dimensional lattice. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(5), P. 880–887.

18. Lakaev S.N., Bozorov I.N. The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice. Theor. Math. Phys., 2009, 158(3), P. 360–376.

19. Bozorov I.N., Khamidov Sh.I., Lakaev S.N. The number and location of eigenvalues of the two particle discrete Schr¨odinger operators. Lobachevskii Journal of Mathematics, 2022, 43(11), P. 3079–3090.

20. Muminov M.I., Khurramov A.M. On compact distribution of two-particle Schr¨odinger operator on a lattice. Russian Math. (Iz. VUZ), 2015, 59(6), P. 18–22.

21. Muminov M.I., Khurramov A.M., Bozorov I.N. Conditions for the existence of bound states of a two-particle Hamiltonian on a three-dimensional lattice. Nanosystems: Phys. Chem. Math., 2022, 13(3), P. 237–244.

22. Reed M., Simon B. Methods of modern Mathematical Physics. Vol.4. Analysis of Operators, Academic Press, London. 1980. 404 p.


Рецензия

Для цитирования:


Муминов М.Э., Хуррамов А.М., Бозоров И.Н. О собственных значениях и виртуальных уровнях двухчастичного гамильтониана на $d$-мерной решетке. Наносистемы: физика, химия, математика. 2023;14(3):295-303. https://doi.org/10.17586/2220-8054-2023-14-3-295-303

For citation:


Muminov M.I., Khurramov A.M., Bozorov I.N. On eigenvalues and virtual levels of a two-particle Hamiltonian on a d-dimensional lattice. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(3):295-303. https://doi.org/10.17586/2220-8054-2023-14-3-295-303

Просмотров: 9


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)