Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Oscillating vorticity in single ring exciton polariton condensates

https://doi.org/10.17586/2220-8054-2023-14-3-328-333

Abstract

We study annular flows of exciton polaritons in exciton polariton condensates emerging in cylindrical optical micropillar cavities under the spatially localised non-resonant laser pumping. Annular flows indicate nonzero vorticity of the polariton condensate associated with the appearance of polariton vortices around the center of the micropillar. We report an experimental observation of single ring shaped condensates in the regime of vorticity oscillating in time. We reproduce the vorticity oscillations numerically and reveal possible control parameters for manipulating by the oscillation period.

About the Authors

V. A. Lukoshkin
Ioffe Institute, Russian Academy of Sciences; Spin Optics Laboratory, St. Petersburg State University
Russian Federation

Vladimir A. Lukoshkin

26 Politechnicheskaya, 194021, St. Petersburg

Ulyanovskaya 1, St. Petersburg 198504



I. E. Sedova
Stoletov Vladimir State University
Russian Federation

Irina E. Sedova

87 Gorky str. 600000, Vladimir



V. K. Kalevich
Ioffe Institute, Russian Academy of Sciences; Spin Optics Laboratory, St. Petersburg State University
Russian Federation

Vladimir K. Kalevich

26 Politechnicheskaya, 194021, St. Petersburg

Ulyanovskaya 1, St. Petersburg 198504



E. S. Sedov
Spin Optics Laboratory, St. Petersburg State University; Stoletov Vladimir State University
Russian Federation

Evgeny S. Sedov

Ulyanovskaya 1, St. Petersburg 198504

87 Gorky str. 600000, Vladimir



Z. Hatzopoulos
FORTH-IESL
Greece

Zacharias Hatzopoulos

P.O. Box 1527, 71110 Heraklion, Crete



P. G. Savvidis
Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study; FORTH-IESL; Department of Materials Science and Technology, University of Crete
China

Pavlos G. Savvidis

18 Shilongshan Rd., Hangzhou 310024, Zhejiang

18 Shilongshan Rd., Hangzhou, Zhejiang Province 310024

P.O. Box 1527, 71110 Heraklion, Crete

P.O. Box 2208, 71003 Heraklion, Crete



A. V. Kavokin
Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study; Moscow Institute of Physics and Technology; Spin Optics Laboratory, St. Petersburg State University
China

Alexey V. Kavokin

18 Shilongshan Rd., Hangzhou 310024, Zhejiang

18 Shilongshan Rd., Hangzhou, Zhejiang Province 310024

Institutskiy per., 9, Dolgoprudnyi, Moscow Region, 141701

Ulyanovskaya 1, St. Petersburg 198504



References

1. Kavokin A., Baumberg J., Malpuech G., Laussy F. Microcavities, 2nd ed., Series on Semiconductor Science and Technology, OUP Oxford, Oxford, 2017.

2. Kasprzak J., Richard M., Kundermann S., et al., Bose–Einstein condensation of exciton polaritons. Nature, 2006, 443 (7110), P. 409–414.

3. Ostrovskaya E.A., Abdullaev J., Desyatnikov A.S., Fraser M.D., Kivshar Y.S. Dissipative solitons and vortices in polariton Bose-Einstein condensates. Physical Review A, 2012, 86 (1), 013636.

4. Li G., Fraser M.D., Yakimenko A., Ostrovskaya E.A. Stability of persistent currents in open dissipative quantum fluids. Physical Review B, 2015, 91 (18), 184518.

5. Nalitov A.V., Liew T.C.H., Kavokin A.V., Altshuler B.L., Rubo Y.G. Spontaneous Polariton Currents in Periodic Lateral Chains. Physical Review Letters, 2017, 119 (6), 067406.

6. Lagoudakis K.G., Wouters M., Richard M., et al. Quantized vortices in an exciton–polariton condensate. Nature Physics, 2008, 4 (9), 706.

7. Kuznetsov A.S., Helgers P.L.J., Biermann K., Santos P.V. Quantum confinement of exciton-polaritons in a structured (Al,Ga)As microcavity. Physical Review B, 2018, 97 (19), 195309.

8. Sich M., Tapia-Rodriguez L.E., Sigurdsson H., et al. Spin domains in one-dimensional conservative polariton solitons. ACS Photonics, 2018, 5 (12), P. 5095–5102.

9. Beierlein J., Rozas E., Egorov O.A., et al. Propagative oscillations in codirectional polariton waveguide couplers. Physical Review Letters, 2021, 126 (7), P. 075302.

10. Lukoshkin V.A., Kalevich V.K., Afanasiev M.M., et al. Persistent circular currents of exciton-polaritons in cylindrical pillar microcavities. Physical Review B, 2018, 97 (19), 195149.

11. Sedov E., Lukoshkin V., Kalevich V., et al. Persistent Currents in Half-Moon Polariton Condensates. ACS Photonics, 2020, 7, P. 1163–1170.

12. Sedov E.S., Lukoshkin V.A., Kalevich V.K., et al. Circular polariton currents with integer and fractional orbital angular momenta. Physical Review Research, 2021, 3 (1), 013072.

13. Sedov E.S., Lukoshkin V.A., Kalevich V.K., et al. Double ring polariton condensates with polariton vortices. Nanosystems: Phys. Chem. Math., 2022, 13 (6), P. 608–614.

14. Lukoshkin V., Sedov E., Kalevich V., et al. Steady state oscillations of circular currents in concentric polariton condensates. Scientific Reports, 2023, 13, 4607.

15. Sedov E., Arakelian S., Kavokin A. Spontaneous symmetry breaking in persistent currents of spinor polaritons. Scientific Reports, 2021, 11, 22382.

16. Askitopoulos A., Ohadi H., Kavokin A.V., et al. Polariton condensation in an optically induced two-dimensional potential. Physical Review B, 2013, 88 (4), 041308.

17. Askitopoulos A., Nalitov A.V., Sedov E.S., et al. All-optical quantum fluid spin beam splitter. Physical Review B, 2018, 97 (23), 235303.

18. Dall R., Fraser M.D., Desyatnikov A.S., et al. Creation of orbital angular momentum states with chiral polaritonic lenses. Physical Review Letters, 2014, 113 (20), 200404.

19. Aladinskaia E., Cherbunin R., Sedov E., et al. Spatial quantization of exciton-polariton condensates in optically induced traps. Physical Review B, 2023, 107 (4), 045302.

20. Paschos G.G., Liew T.C.H., et al. An exciton-polariton bolometer for terahertz radiation detection. Sci. Rep., 2018, 8, 10092.

21. Kozin V.K., Shelykh I.A., Nalitov A.V., Iorsh I.V. Topological metamaterials based on polariton rings. Physical Review B, 2018, 98 (12), 125115.

22. Xue Y., Chestnov I., Sedov E., et al. Split-ring polariton condensates as macroscopic two-level quantum systems. Physical Review Research, 2021, 3 (1), 013099.

23. Wouters M. Energy relaxation in the mean-field description of polariton condensates. New Journal of Physics, 2012, 14, 075020.

24. Wertz E., Amo A., Solnyshkov D.D., et al. Propagation and Amplification Dynamics of 1D Polariton Condensates. Physical Review Letters, 2012, 109 (21), 216404.

25. Sedova I., Sedov E. Polarization conversion in a polariton three-waveguide coupler. Results in Optics, 2021, 4, 100105.

26. Rayanov K., Altshuler B.L., Rubo Y.G., Flach S. Frequency combs with weakly lasing exciton-polariton condensates. Physical Review Letters, 2015, 114 (19), 193901.

27. Kim S., Rubo Y.G., Liew T.C.H., et al. Emergence of microfrequency comb via limit cycles in dissipatively coupled condensates. Physical Review B, 2020, 101 (8), 085302.

28. Nalitov A.V., Sigurdsson H., Morina S., et al. Optically trapped polariton condensates as semiclassical time crystals. Physical Review A, 2019, 99 (3), 033830.

29. Kavokin A., Liew T.C.H., Schneider C., et al. Polariton condensates for classical and quantum computing. Nature Reviews Physics, 2022, 4, P. 435–451.


Review

For citations:


Lukoshkin V.A., Sedova I.E., Kalevich V.K., Sedov E.S., Hatzopoulos Z., Savvidis P.G., Kavokin A.V. Oscillating vorticity in single ring exciton polariton condensates. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(3):328-333. https://doi.org/10.17586/2220-8054-2023-14-3-328-333

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)