Agglomeration of magnetite nanoparticles with citrate shell in an aqueous magnetic fluid
https://doi.org/10.17586/2220-8054-2023-14-3-334-341
Abstract
In this work, the aggregation of nanoparticles in an aqueous colloidal solution of magnetite, stabilized by creating a citrate shell on the particle surface is studied. Electron microscopy and laser correlation spectroscopy were used as experimental methods. Optical measurements were carried out both at zero external magnetic field and in the fields differently oriented relative to the probing laser beam. It is shown that the samples tend to form large aggregates even without the application of the field, and in the case of its presence the behavior of these structures has features that distinguish them from other magnetic fluids.
About the Authors
I. V. PleshakovRussian Federation
Ivan V. Pleshakov
26 Politechnicheskaya str., St. Petersburg, 194021
V. A. Ryzhov
Russian Federation
Vyacheslav A. Ryzhov
Gatchina, 188300
Ya. Yu. Marchenko
Russian Federation
Yaroslav Yu. Marchenko
Gatchina, 188300
A. A. Alekseev
Russian Federation
Arseniy A. Alekseev
29 Polytechnicheskaya str., St. Petersburg, 195251
E. K. Karseeva
Russian Federation
Elina K. Karseeva
29 Polytechnicheskaya str., St. Petersburg, 195251
V. N. Nevedomskiy
Russian Federation
Vladimir N. Nevedomskiy
26 Politechnicheskaya str., St. Petersburg, 194021
A. V. Prokof’ev
Russian Federation
Andrey V. Prokof’ev
26 Politechnicheskaya str., St. Petersburg, 194021
References
1. Socoliuc V., Avdeev M., Kuncser V., Turcu R., Tomb´acz E., Vekas L. Ferrofluids and bio-ferrofluids: looking back and stepping forward. Nanoscale, 2022, 14, P. 4786–4886.
2. Oehlsen O., Cervantes-Ram´ırez S.I., Cervantes-Avil´es P., Medina-Velo I.A. Approaches on ferrofluid synthesis and applications: current status and future perspectives. ACS Omega, 2022, 7, P. 3134–3150.
3. Taghizadeh M., Bozorgzadeh F., Ghorbani M. Designing magnetic field sensor based on tapered photonic crystal fibre assisted by a ferrofluid. Scientific Reports, 2021, 11(1), P. 14325.
4. Yong Zhao, Yuyan Zhang, R.-Q. Lv, QiWang. Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics. J. Magn. Magn. Mat., 2011, 323(23), P. 2987–2996.
5. Imran M., Alam M.M., Khan A. Advanced biomedical applications of iron oxide nanostructures based ferrofluids. Nanotechnology, 2021, 32(42), P. 422001.
6. Pilati V., Gomide G., Cabreira Gomes R., Goya G.F, Depeyrot J. Colloidal stability and concentration effects on nanoparticle heat delivery for magnetic fluid hyperthermia. Langmuir, 2021, 37(3), P. 1129–1140.
7. Ivanov A.O., Zubarev A.Yu. Chain formation and phase separation in ferrofluids: the influence on viscous properties. Materials, 2020, 13(18), P. 3956.
8. Shevtsov M.A., Nikolaev B.P., Yakovleva L.Y., Marchenko Y.Y., Dobrodumov A.V., Mikhrina A.L., Martynova M.G., Bystrova O.A., Yakovenko I.V., Ischenko A.M. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors. Int. J. Nanomed., 2014, 9, P. 273.
9. Kotsmar C., Ki Youl Yoon, Haiyang Yu, Seung Yup Ryoo, Joseph Barth, Shao S., Prodanovi´c M., Milner T.E., Bryant S.L., Chun Huh, Johnston K.P. Stable citrate-coated iron oxide superparamagnetic nanoclusters at high salinity. Ind. Eng. Chem. Res., 2010, 49, P. 12435–12443.
10. Yusuf M.S., Rahmasari S., Rahmasari R. Synthesis processing condition optimization of citrate stabilized superparamagnetic iron oxide nanoparticles using direct co-precipitation method. Biomed. Pharmacol. J., 2021, 14(3), P. 1533–1542.
11. Arefi M., Kazemi Miraki M., Mostafalu R., Satari M., Heydari A. Citric acid stabilized on the surface of magnetic nanoparticles as an efficient and recyclable catalyst for transamidation of carboxamides, phthalimide, urea and thiourea with amines under neat conditions. J. Iran. Chem. Soc., 2019, 16, P. 393–400.
12. Broillet S., Szlag D., Bouwens A., Maurizi L., Hofmann H., Lasser T., Leutenegger M. Visible light optical coherence correlation spectroscopy. Opt. Express, 2014, 22(18), P. 21944–21957.
13. Nepomnyashchaya E., Velichko E., Aksenov E., Bogomaz T. Optoelectronic method for analysis of biomolecular interaction dynamics. J. Phys. Conf. Ser., 2014, 541(9), P. 01203.
14. Nepomnyashchaya E.K., Prokofiev A.V., Velichko E.N., Pleshakov I.V., Kuzmin Yu.I. Investigation of magneto-optical properties of ferrofluids by laser light scattering techniques. J. Magn. Magn. Mat., 2017, 431, P. 24–26.
15. Nepomniashchaia E.K., Velichko E.N., Aksenov E.T. Solution of the laser correlation spectroscopy inverse problem by the regularization method. Univ. Res. J., 2015,15, P. 13–21.
16. Scherer C., Figueiredo Neto A.M. Ferrofluids: Properties and Applications. Braz. J. Phys., 2005, 35(3A), P. 718–727.
17. Chikazumi S., Taketomi S., Ukita M., Mizukami M., Miyajima H., Setogawa M., Kurihara Y. Physics of magnetic fluids. J. Magn. Magn. Mat., 1987, 65, P. 245–251.
Review
For citations:
Pleshakov I.V., Ryzhov V.A., Marchenko Ya.Yu., Alekseev A.A., Karseeva E.K., Nevedomskiy V.N., Prokof’ev A.V. Agglomeration of magnetite nanoparticles with citrate shell in an aqueous magnetic fluid. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(3):334-341. https://doi.org/10.17586/2220-8054-2023-14-3-334-341