Measurement-device-independent continuous variable quantum key distribution protocol operation in optical transport networks
https://doi.org/10.17586/2220-8054-2023-14-3-342-348
Abstract
Numerically, a theoretical analysis of the noise impact caused by spontaneous Raman scattering, four-wave mixing, and linear channel crosstalk on the measurement-device-independent continuous variable quantum key distribution systems is conducted. The analysis considers symmetry and asymmetry of system paths, as well as possible channel allocation schemes, for a quantum channel located in C- and O-bans. Mathematical models for MDI CV-QKD system and the contributing noises’ description are provided. The secure key generation rate is estimated to state features of protocol operation when integrated with existing DWDM systems in the context of its implementation into telecommunication networks.
About the Authors
I. VorontsovaRussian Federation
Irina Vorontsova
Kronverkskiy, 49, St. Petersburg, 197101
R. Goncharov
Russian Federation
Roman Goncharov
Kronverkskiy, 49, St. Petersburg, 197101
S. Kynev
Russian Federation
Sergey Kynev
Kronverkskiy, 49, St. Petersburg, 197101
6th Vasilyevskogo Ostrova Line, 59, St. Petersburg, 199178
F. Kiselev
Russian Federation
Fedor Kiselev
Kronverkskiy, 49, St. Petersburg, 197101
6th Vasilyevskogo Ostrova Line, 59, St. Petersburg, 199178
V. Egorov
Russian Federation
Vladimir Egorov
Kronverkskiy, 49, St. Petersburg, 197101
6th Vasilyevskogo Ostrova Line, 59, St. Petersburg, 199178
References
1. Scarani V., Bechmann-Pasquinucci H., J Cerf N., Duˇsek M., L¨utkenhaus N., Peev M. The security of practical quantum key distribution. Reviews of Modern Physics, 2009, 81 (3), P. 1301–1350.
2. Pirandola S., Andersen U.L., Banchi L., Berta M., Bunandar D., Colbeck R., Englund D., Gehring T., Lupo C., Ottaviani C., Pereira J.L. Advances in quantum cryptography. Advances in Optics and Photonics, 2020, 12 (4), P. 1012–1236.
3. Gisin N., Ribordy G.G., Titte W., Zbinden H. Quantum cryptography. Reviews of Modern Physics, 2002, 74 (1), P. 145–196.
4. Grosshans F., Van Assche G., Wenger J., Brouri R., Cerf N.J., Grangier P. Quantum key distribution using gaussian-modulated coherent states. Nature, 2003, 421 (1), P. 238–241.
5. Lo H.-K., Curty M., Qi B. Measurement-Device-Independent Quantum Key Distribution. Physical Review Letters, 2012, 108 (3), 130503.
6. Mlejnek M., Kaliteevskiy N., Nolan D.A. Reducing spontaneous Raman scattering noise in high quantum bit rate QKD systems over optical fiber, 2017, URL: https://arxiv.org/ftp/arxiv/papers/1712/1712.05891.pdf.
7. Ma X., Razavi M. Alternative schemes for measurement-device-independent quantum key distribution. Physical Review A, 2012, 86 (6), 62319.
8. Papanastasiou P., Ottaviani C., Pirandola S. Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables. Physical Review A, 2017, 96 (10), 042332.
9. Lupo C., Ottaviani C., Papanastasiou P., Pirandola S. Continuous-variable measurement-device-independent quantum key distribution: Composable security against coherent attacks. Physical Review A, 2018, 97 (5), P. 1–10.
10. Weedbrook C., Lance A.M., Bowen W.P., Symul T., Ralph T.C., Lam P.K. Quantum Cryptography Without Switching. Physical Review Letters, 2004, 93 (10), 170504.
11. Grosshans F., Cerf N.J., Wenger J., Tualle-Brouri R., Grangier P. Virtual Entanglement and Reconciliation Protocols for Quantum Cryptography with Continuous Variables. Quantum Information and Computation, 2003, 3 (7), P. 535—552.
12. Laudenbach F., Pacher C., Fung C.-H.F., Poppe A., Peev M., Schrenk B., Hentschel M.,Walther P., U¨ bel H. H. Continuous-Variable Quantum Key Distribution with Gaussian Modulation-The Theory of Practical Implementations. Advanced Quantum Technologies, 2018, 1 (8), 1800011.
13. Devetak I.,Winter A. Distillation of secret key and entanglement from quantum states. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461 (1), P. 207–235.
14. Pirandola S., Mancini S., Lloyd S., Braunstein S.L. Continuous-variable quantum cryptography using two-way quantum communication. Nature Physics, 2008, 4 (9), P. 726–730.
15. Lin R., Chen J. Minimizing spontaneous Raman scattering noise for quantum key distribution in WDM network. Optical Fiber Communication Conference, Optica Publishing Group, 2021, F4E–6.
16. Cai C., Sun Y., Ji Y. Intercore spontaneous raman scattering impact on quantum key distribution in multicore fiber. New Journal of Physics, 2020, 22 (8), 083020.
17. Eraerds P., Walenta N., Legre M., Gisin N., Zbinden H. Quantum key distribution and 1 Gbps data encryption over a single fibre. New Journal of Physics, 2010, 12 (6), 063027.
18. Boyd R.W. Nonlinear Optics. 4th Edition. Elsevier, Amsterdam, 2019.
19. Lin Q., Yaman F., Agrawal G.P. Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization. Physical Review A, 2007, 75 (1), 023803.
20. Hill A.-M., Payne D. B. Linear crosstalk in wavelength-division-multiplexed optical-fiber transmission systems. Journal of Lightwave Technology, 1985, 3 (3), P. 643–651.
21. Vorontsova I, Goncharov R., Tarabrina A., Kiselev F., Egorov V. Theoretical analysis of quantum key distribution systems when integrated with a DWDM optical transport network. Journal of the Optical Society of America B, 2023, 40 (1), P. 63–71.
22. Vorontsova I, Goncharov R., Tarabrina A., Tupyakov D., Bolychev E., Smirnov S., Kiselev F., Egorov V. Theoretical analysis of measurementdevice- independent quantum key distribution systems integrated into fiber-optic communication lines using dense wavelength division multiplexing. Journal of Optical Technology, 2022, 89 (7), P. 424–429.
23. Tarabrina A., Tupyakov D., Vorontsova I, Goncharov R., Zinovev A., Smirnov S., Kiselev F., Egorov V. Application of optimization methods to minimize noise in quantum key distribution systems integrated into fiber-optic communication lines using dense wavelength division multiplexing. Journal of Optical Technology, 2022, 89 (9), P. 549–554.
24. Li Z., Zhang Y.-C., Xu F., Peng X., Guo H. Continuous-variable measurement-device-independent quantum key distribution. Physical Review A, 2014, 89 (5), 052301.
Review
For citations:
Vorontsova I., Goncharov R., Kynev S., Kiselev F., Egorov V. Measurement-device-independent continuous variable quantum key distribution protocol operation in optical transport networks. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(3):342-348. https://doi.org/10.17586/2220-8054-2023-14-3-342-348