Single-step lithography-free fabrication of nanoscale broadband radiation sources
https://doi.org/10.17586/2220-8054-2023-14-3-349-353
Abstract
In this paper, we present a one-stage method for fabricating hybrid metal-dielectric nanostructures without the use of complex and expensive lithographic processes. The formation of arrays of nanoparticles occurs in the process of irradiation of a two-layer gold-silicon film with simultaneous mixing of materials. In this work, the internal structure of the obtained nanoparticles was studied using the methods of transmission scanning electron microscopy and energy-dispersive X-ray spectroscopy, and their broadband photoluminescence in the range of 450 – 900 nm was also demonstrated. These structures are promising as a source of radiation for optical measurements in lab-on-a-chip devices, which was shown by measuring the transmission spectrum of the Rhodamine B dye as an example.
Keywords
About the Authors
E. I. AgeevRussian Federation
Eduard I. Ageev
Kronverkskiy, 49, St. Petersburg, 197101
S. V. Koromyslov
Russian Federation
Sergej V. Koromyslov
Kronverkskiy, 49, St. Petersburg, 197101
M. A. Gremilov
Russian Federation
Mikhail A. Gremilov
Polytechnicheskaya, 29, St. Petersburg, 195251
D. V. Danilov
Russian Federation
Denis V. Danilov
Universitetskaya Emb., 7/9, St. Petersburg, 199034
E. A. Petrova
Russian Federation
Elena A. Petrova
Kronverkskiy, 49, St. Petersburg, 197101
I. I. Shishkin
Russian Federation
Ivan I. Shishkin
Kronverkskiy, 49, St. Petersburg, 197101
D. A. Zuev
Russian Federation
Dmitry A. Zuev
Kronverkskiy, 49, St. Petersburg, 197101
References
1. Jiang R., Li B., Fang C., Wang J. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Advanced materials, 2014, 26, P. 5274–5309.
2. Makarov S., Sinev I., Milichko V., Komissarenko F., Zuev D., Ushakova E., Mukhin I., Yu Y., Kuznetsov A., Belov P., et al. Nanoscale generation of white light for ultrabroadband nanospectroscopy. Nano letters, 2018, 18, P. 535–539.
3. Lebedev D., Shkoldin V., Mozharov A., Larin A., Permyakov D., Samusev A., Petukhov A., Golubok A., Arkhipov A., Mukhin I. Nanoscale Electrically Driven Light Source Based on Hybrid Semiconductor/Metal Nanoantenna. The Journal of Physical Chemistry Letters, 2022, 13, P. 4612–4620.
4. Gurbatov S., Puzikov V., Storozhenko D., Modin E., Mitsai E., Cherepakhin A., Shevlyagin A., Gerasimenko A., Kulinich S., Kuchmizhak A. Multigram-Scale Production of Hybrid Au–Si Nanomaterial by Laser Ablation in Liquid (LAL) for Temperature-Feedback Optical Nanosensing, Light-to-Heat Conversion, and Anticounterfeit Labeling. Appl. Mater. Interfaces, 2023, 15, P. 3336–3347.
5. Guo H., Hu Q., Zhang C., Liu H., Wu R., Pan S. Strong Plasmon-Mie Resonance in SiPd Core- Shell Nanocavity. Materials, 2023, 16, 1453.
6. Wu J., Dong M., Rigatto C., Liu Y., Lin F. Lab-on-chip technology for chronic disease diagnosis. NPJ Digital Med., 2018, 1, P. 1–11.
7. Rezaei S.D., Dong Z., Chan Y.E., Trisno J., Ng R.J.H., Ruan Q., Qiu C.-W., Mortensen N.A., Yang J.K.W. Nanophotonic Structural Colors. ACS Photonics, 2020, 8, P. 18–33.
8. De La Rica R., Stevens M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nature nanotechnology, 2012, 7, P. 821–824.
9. Diamandis E.P. Mass Spectrometry as a Diagnostic and a Cancer Biomarker Discovery Tool: Opportunities and Potential Limitations. Molecular & Cellular Proteomics, 2004, 3, P. 367–378.
10. Loonen A.J.M., Schuurman R., van den Brule A.J.C. Highlights from the 7th European Meeting on Molecular Diagnostics. Expert review of molecular diagnostics, 2012, 12, P. 17–19.
11. Cho C.-H., Aspetti C.O., Park J., Agarwal R. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nature photonics, 2013, 7, P. 285–289.
12. Bouhelier A., Beversluis M., Novotny L. Characterization of nanoplasmonic structures by locally excited photoluminescence. Applied Physics Letters, 2003, 83, P. 5041–5043.
13. Lepeshov S., Krasnok A., Belov P., Miroshnichenko A. Hybrid nanophotonics Physics–Uspekhi, 2019, 61, 1035.
14. Larin A., Nomine A., Ageev E., Ghanbaja J., Kolotova L., Starikov S., Bruy‘ere S., Belmonte T., Makarov S., Zuev D. Plasmonic nanosponges filled with silicon for enhanced white light emission. Nanoscale, 2020, 12, P. 1013–1021.
15. Koromyslov S., Ageev E., Ponkratova E., Larin A., Shishkin I., Danilov D., Mukhin I., Makarov S., Zuev D. Femtosecond Laser-Assisted Formation of Hybrid Nanoparticles from Bi-Layer Gold-Silicon Films for Microscale White-Light Source. Nanomaterials, 2022, 12, 1756.
16. Dmitriev P., Lassalle E., Ding L., Pan Z., Neo D., Valuckas V., Paniagua-Dominguez R., Yang J., Demir H., Kuznetsov A. Hybrid Dielectric- Plasmonic Nanoantenna with Multiresonances for Subwavelength Photon Sources. ACS Photonics, 2023, 10, P. 582–594.
17. Tiwari S., Taneja C., Sharma V., Vasista A., Paul D., Kumar G. Dielectric Microsphere Coupled to a Plasmonic Nanowire: A Self-Assembled Hybrid Optical Antenna. Adv. Opt. Mater., 2020, 8, 1901672.
18. Zuev D., Makarov S., Mukhin I., Milichko V., Starikov S., Morozov I., Shishkin I., Krasnok A., Belov P. Fabrication of Hybrid Nanostructures via Nanoscale Laser-Induced Reshaping for Advanced Light Manipulation. Advanced Materials, 2016, 28, P. 3087–3093.
19. Adachi N.N. Eutectic reaction of gold thin-films deposited on silicon surface. Surface science, 2002, 506, P. 305–312.
20. Ruffino F., Pugliara A., Carria E., Romano L., Bongiorno C., Spinella C., Grimaldi M. Novel approach to the fabrication of Au/silica core–shell nanostructures based on nanosecond laser irradiation of thin Au films on Si. Nanotechnology, 2012, 23, 045601.
21. Zhigunov D., Evlyukhin A., Shalin A., Zywietz U., Chichkov B. Femtosecond Laser Printing of Single Ge and SiGe Nanoparticles with Electric and Magnetic Optical Resonances. ACS Photonics, 2018, 5, P. 977–983.
22. Kucherik A., Kutrovskaya S., Osipov A., Gerke M., Chestnov I., Arakelian S., Shalin A., Evlyukhin A., Kavokin A. Nano-Antennas Based on Silicon-Gold Nanostructures. Scientific Reports, 2019, 9, P. 1–6.
23. Al-Kattan A., Tselikov G., Metwally K., Popov A., Mensah S., Kabashin A. Laser Ablation-Assisted Synthesis of Plasmonic Si@Au Core-Satellite Nanocomposites for Biomedical Applications. Nanomaterials, 2021, 11, 592.
24. Ye J., Zuev D., Makarov S. Dewetting mechanisms and their exploitation for the large-scale fabrication of advanced nanophotonic systems. Int. Materials Reviews, 2019, 64, P. 439–477.
25. Makarov S.V., Milichko V.A., Mukhin I.S., Shishkin I.I., Zuev D.A., Mozharov A.M., Krasnok A.E., Belov P.A. Controllable femtosecond laserinduced dewetting for plasmonic applications. Laser Photonics Rev., 2016, 10, P. 91–99.
26. Syubaev S., Mitsai E., Starikov S., Kuchmizhak A. Laser-printed hemispherical silicon Mie resonators. Optics Letters, 2021, 46, P. 2304–2307.
27. Zhang C., Xu Y., Liu J., Li J., Xiang J., Li H., Li J., Dai Q., Lan S., Miroshnichenko A.E. Lighting up silicon nanoparticles with Mie resonances. Nat. Commun., 2018, 9, P. 1–7.
Review
For citations:
Ageev E.I., Koromyslov S.V., Gremilov M.A., Danilov D.V., Petrova E.A., Shishkin I.I., Zuev D.A. Single-step lithography-free fabrication of nanoscale broadband radiation sources. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(3):349-353. https://doi.org/10.17586/2220-8054-2023-14-3-349-353