Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Single-step lithography-free fabrication of nanoscale broadband radiation sources

https://doi.org/10.17586/2220-8054-2023-14-3-349-353

Abstract

In this paper, we present a one-stage method for fabricating hybrid metal-dielectric nanostructures without the use of complex and expensive lithographic processes. The formation of arrays of nanoparticles occurs in the process of irradiation of a two-layer gold-silicon film with simultaneous mixing of materials. In this work, the internal structure of the obtained nanoparticles was studied using the methods of transmission scanning electron microscopy and energy-dispersive X-ray spectroscopy, and their broadband photoluminescence in the range of 450 – 900 nm was also demonstrated. These structures are promising as a source of radiation for optical measurements in lab-on-a-chip devices, which was shown by measuring the transmission spectrum of the Rhodamine B dye as an example.

About the Authors

E. I. Ageev
ITMO University
Russian Federation

Eduard I. Ageev

Kronverkskiy, 49, St. Petersburg, 197101



S. V. Koromyslov
ITMO University
Russian Federation

Sergej V. Koromyslov

Kronverkskiy, 49, St. Petersburg, 197101



M. A. Gremilov
St. Petersburg Polytechnic University of Peter the Great
Russian Federation

Mikhail A. Gremilov

Polytechnicheskaya, 29, St. Petersburg, 195251



D. V. Danilov
St. Petersburg State University
Russian Federation

Denis V. Danilov

Universitetskaya Emb., 7/9, St. Petersburg, 199034



E. A. Petrova
ITMO University
Russian Federation

Elena A. Petrova

Kronverkskiy, 49, St. Petersburg, 197101



I. I. Shishkin
ITMO University
Russian Federation

Ivan I. Shishkin

Kronverkskiy, 49, St. Petersburg, 197101



D. A. Zuev
ITMO University
Russian Federation

Dmitry A. Zuev

Kronverkskiy, 49, St. Petersburg, 197101



References

1. Jiang R., Li B., Fang C., Wang J. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Advanced materials, 2014, 26, P. 5274–5309.

2. Makarov S., Sinev I., Milichko V., Komissarenko F., Zuev D., Ushakova E., Mukhin I., Yu Y., Kuznetsov A., Belov P., et al. Nanoscale generation of white light for ultrabroadband nanospectroscopy. Nano letters, 2018, 18, P. 535–539.

3. Lebedev D., Shkoldin V., Mozharov A., Larin A., Permyakov D., Samusev A., Petukhov A., Golubok A., Arkhipov A., Mukhin I. Nanoscale Electrically Driven Light Source Based on Hybrid Semiconductor/Metal Nanoantenna. The Journal of Physical Chemistry Letters, 2022, 13, P. 4612–4620.

4. Gurbatov S., Puzikov V., Storozhenko D., Modin E., Mitsai E., Cherepakhin A., Shevlyagin A., Gerasimenko A., Kulinich S., Kuchmizhak A. Multigram-Scale Production of Hybrid Au–Si Nanomaterial by Laser Ablation in Liquid (LAL) for Temperature-Feedback Optical Nanosensing, Light-to-Heat Conversion, and Anticounterfeit Labeling. Appl. Mater. Interfaces, 2023, 15, P. 3336–3347.

5. Guo H., Hu Q., Zhang C., Liu H., Wu R., Pan S. Strong Plasmon-Mie Resonance in SiPd Core- Shell Nanocavity. Materials, 2023, 16, 1453.

6. Wu J., Dong M., Rigatto C., Liu Y., Lin F. Lab-on-chip technology for chronic disease diagnosis. NPJ Digital Med., 2018, 1, P. 1–11.

7. Rezaei S.D., Dong Z., Chan Y.E., Trisno J., Ng R.J.H., Ruan Q., Qiu C.-W., Mortensen N.A., Yang J.K.W. Nanophotonic Structural Colors. ACS Photonics, 2020, 8, P. 18–33.

8. De La Rica R., Stevens M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nature nanotechnology, 2012, 7, P. 821–824.

9. Diamandis E.P. Mass Spectrometry as a Diagnostic and a Cancer Biomarker Discovery Tool: Opportunities and Potential Limitations. Molecular & Cellular Proteomics, 2004, 3, P. 367–378.

10. Loonen A.J.M., Schuurman R., van den Brule A.J.C. Highlights from the 7th European Meeting on Molecular Diagnostics. Expert review of molecular diagnostics, 2012, 12, P. 17–19.

11. Cho C.-H., Aspetti C.O., Park J., Agarwal R. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nature photonics, 2013, 7, P. 285–289.

12. Bouhelier A., Beversluis M., Novotny L. Characterization of nanoplasmonic structures by locally excited photoluminescence. Applied Physics Letters, 2003, 83, P. 5041–5043.

13. Lepeshov S., Krasnok A., Belov P., Miroshnichenko A. Hybrid nanophotonics Physics–Uspekhi, 2019, 61, 1035.

14. Larin A., Nomine A., Ageev E., Ghanbaja J., Kolotova L., Starikov S., Bruy‘ere S., Belmonte T., Makarov S., Zuev D. Plasmonic nanosponges filled with silicon for enhanced white light emission. Nanoscale, 2020, 12, P. 1013–1021.

15. Koromyslov S., Ageev E., Ponkratova E., Larin A., Shishkin I., Danilov D., Mukhin I., Makarov S., Zuev D. Femtosecond Laser-Assisted Formation of Hybrid Nanoparticles from Bi-Layer Gold-Silicon Films for Microscale White-Light Source. Nanomaterials, 2022, 12, 1756.

16. Dmitriev P., Lassalle E., Ding L., Pan Z., Neo D., Valuckas V., Paniagua-Dominguez R., Yang J., Demir H., Kuznetsov A. Hybrid Dielectric- Plasmonic Nanoantenna with Multiresonances for Subwavelength Photon Sources. ACS Photonics, 2023, 10, P. 582–594.

17. Tiwari S., Taneja C., Sharma V., Vasista A., Paul D., Kumar G. Dielectric Microsphere Coupled to a Plasmonic Nanowire: A Self-Assembled Hybrid Optical Antenna. Adv. Opt. Mater., 2020, 8, 1901672.

18. Zuev D., Makarov S., Mukhin I., Milichko V., Starikov S., Morozov I., Shishkin I., Krasnok A., Belov P. Fabrication of Hybrid Nanostructures via Nanoscale Laser-Induced Reshaping for Advanced Light Manipulation. Advanced Materials, 2016, 28, P. 3087–3093.

19. Adachi N.N. Eutectic reaction of gold thin-films deposited on silicon surface. Surface science, 2002, 506, P. 305–312.

20. Ruffino F., Pugliara A., Carria E., Romano L., Bongiorno C., Spinella C., Grimaldi M. Novel approach to the fabrication of Au/silica core–shell nanostructures based on nanosecond laser irradiation of thin Au films on Si. Nanotechnology, 2012, 23, 045601.

21. Zhigunov D., Evlyukhin A., Shalin A., Zywietz U., Chichkov B. Femtosecond Laser Printing of Single Ge and SiGe Nanoparticles with Electric and Magnetic Optical Resonances. ACS Photonics, 2018, 5, P. 977–983.

22. Kucherik A., Kutrovskaya S., Osipov A., Gerke M., Chestnov I., Arakelian S., Shalin A., Evlyukhin A., Kavokin A. Nano-Antennas Based on Silicon-Gold Nanostructures. Scientific Reports, 2019, 9, P. 1–6.

23. Al-Kattan A., Tselikov G., Metwally K., Popov A., Mensah S., Kabashin A. Laser Ablation-Assisted Synthesis of Plasmonic Si@Au Core-Satellite Nanocomposites for Biomedical Applications. Nanomaterials, 2021, 11, 592.

24. Ye J., Zuev D., Makarov S. Dewetting mechanisms and their exploitation for the large-scale fabrication of advanced nanophotonic systems. Int. Materials Reviews, 2019, 64, P. 439–477.

25. Makarov S.V., Milichko V.A., Mukhin I.S., Shishkin I.I., Zuev D.A., Mozharov A.M., Krasnok A.E., Belov P.A. Controllable femtosecond laserinduced dewetting for plasmonic applications. Laser Photonics Rev., 2016, 10, P. 91–99.

26. Syubaev S., Mitsai E., Starikov S., Kuchmizhak A. Laser-printed hemispherical silicon Mie resonators. Optics Letters, 2021, 46, P. 2304–2307.

27. Zhang C., Xu Y., Liu J., Li J., Xiang J., Li H., Li J., Dai Q., Lan S., Miroshnichenko A.E. Lighting up silicon nanoparticles with Mie resonances. Nat. Commun., 2018, 9, P. 1–7.


Review

For citations:


Ageev E.I., Koromyslov S.V., Gremilov M.A., Danilov D.V., Petrova E.A., Shishkin I.I., Zuev D.A. Single-step lithography-free fabrication of nanoscale broadband radiation sources. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(3):349-353. https://doi.org/10.17586/2220-8054-2023-14-3-349-353

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)