Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Effect of electron-phonon interaction on the first excited energy level of a Gaussian GaAs quantum dot

https://doi.org/10.17586/2220-8054-2025-16-3-306-310

Abstract

The effect of electron-phonon interaction on the first excited state of a three-dimensional polar semiconductor quantum dot with Gaussian confinement is studied using the second-order Rayleigh-Schr¨odinger perturbation theory. An analytical expression for the first excited state polaronic correction is obtained under a plausible approximation. It is shown that this energy depends both on the strength and range of the Gaussian potential. Finally our theory is applied to a GaAs quantum dot and it is shown that the polaronic effect to the first excited level can be significantly large if the size of the dot is small. Since the information of the excited states is important for the study of decoherence phenomena, our results could be useful for quantum information processing.

About the Authors

S. Mukhopadhyay
CVR college of Engineering
India

Soma Mukhopadhyay – Department of Physics

Mangalpalli, Ibrahimpatnam, Hyderabad 501510, Telangana



Ch. Vidyullatha
CMR College of Engineering and Technology
India

Ch. Vidyullatha – Department of Humanities and Sciences

Medchal, Hyderabad 50140, Telangana



P. Saini
Institute of Physics
India

Pooja Saini

Bhubaneswar, 751005, Odisha



Z. Malik
North Carolina State University
United States

Raleigh, 27606



References

1. Ren Z., Shi Z., Feng H., Xu Z., Hao W. Recent Progresses of Polarons: Fundamentals and Roles in Photocatalysis and Photoelectrocatalysis. Adv. Sci., 2024, 11, P. 2305139.

2. Vasilchenko V. and Gonze X. Polarons in the cubic generalized Frohlich model: Spontaneous symmetry breaking. Phys. Rev. B, 2024, 109, P. 184301.

3. Chatterjee A., Mukhopadhyay S., Book: Polarons and Bipolarons – An Introduction. Taylor and Francis, 2018 and Ref. there in.

4. Demel T., Heitmann D., Grambow P., Ploog K. Nonlocaldynamic response and level crossings in quantum-dot structures. Phys. Rev. Lett., 1990, 64, P. 788.

5. Lorke A., Kotthaus J.P., Ploog K. Coupling of quantum dots on GaAs. Phys. Rev. Lett., 1990, 64, P. 2559.

6. Kohn W. Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas. Phys. Rev., 1961, 123, P. 1242.

7. Boda A., Boyacioglu B., Chatterjee A. Ground state properties of a two-electron system in a three-dimensional GaAs quantum dot with Gaussian confinement in a magnetic field. J. Appl. Phys., 2013, 114, P. 044311.

8. Mukhopadhyay S., Chatterjee A. Polaronic correction to the first excited electronic energy level in semiconductor quantum dots with parabolic confinement. Phys. Lett. A, 1998, 240, P. 100.

9. Mukhopadhyay S., Chatterjee A. Relaxed and effective mass excited states of a quantum dot polaron. Phys. Rev. B, 1998, 58, P. 2088.

10. Mukhopadhyay S., Chatterjee A. Suppression of Zeeman splitting in a GaAs quantum dot. Phys. Rev. B, 1999, 59, P. R7833.

11. Adamowski J., Sobkowicz M., Szafran B., Bednarek S. Electron pair in a Gaussian confining potential. Phys. Rev. B, 2000, 62, P. 4234.

12. Germain M., Kartheuser E., Gurskil A. L., Lutsenko E.V., Marko I.P., Pavlovskii V.N., Yablonskii G.P., Heime K., Heuken M., Schineller B. Effects of electron–phonon interaction and chemical shift on near-band-edge recombination in GaN. J. Appl.Phys., 2002, 91, P. 9827.

13. Yanar S., Sevim A., Boyacioglu B., Saglam M., Mukhopadhyay S., Chatterjee A. Polaronic effects in a Gaussian quantum dot. Superlattices & Microstructures, 2008, 43, P. 208.

14. Mukhopadhyay S., Chatterjee A. The ground and the first excited states of an electron in a multidimensional polar semiconductor quantum dot: an all-coupling variational approach. J. Phys. Cond. Matter, 1999, 11, P. 2071.

15. Szafran B., Adamowski J., Bednarek S. Ground and excited states of few-electron systems in spherical quantum dots. Physica E, 1999, 4, P. 1.

16. Cohen M. On the Schrodinger equation with a Gaussian potential. J. Phys. A, 1984, 17, P. L101.

17. Chatterjee A. 1/N expansion for the Gaussian potential. J. Phys. A, 1985, 18, P. 2403.

18. Feng D.H., Xu Z.Z., Jia T.Q., Li X.X., Li C.B., Sun H.Y., Xu S.Z. Polaronic correction to the first excited electronic energy level in an anisotropic semiconductor quantum dot. Euro Phys. J. B, 2005, 44, P. 15.

19. Luhluh Jahan K., Chatterjee A. Effect of Temperature on the Single-Particle Ground-State and Self Energy of a Polar Quantum Dot with Gaussian Confinement. Physica B, 2020, 579, P. 411892.

20. Mukhopadhyay S., Boyacioglu B., Saglam M., Chatterjee A. Quantum size effect on the phonon-induced Zeeman splitting in a GaAs quantum dot with Gaussian and parabolic confining potentials. Physica E, 2008, 40, P. 2779.

21. Saini P., Boda A., Chatterjee A. Effect of Rashba and Dresselhaus spin-orbit interactions on a D0 impurity in a two-dimensional Gaussian GaAs quantum dot in the presence of an external magnetic field. J. Mag. Mag. Mat., 2019, 485, P. 407.

22. Monisha P.J., Mukhopadhyay S. The pinning effect in a polar semiconductor quantum dot with Gaussian confinement: A study using the improved Wigner–Brillouin perturbation theory. Physica B, 2015, 464, P. 38.


Review

For citations:


Mukhopadhyay S., Vidyullatha Ch., Saini P., Malik Z. Effect of electron-phonon interaction on the first excited energy level of a Gaussian GaAs quantum dot. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(3):306-310. https://doi.org/10.17586/2220-8054-2025-16-3-306-310

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)