Properties of multi-moded phase-randomized coherent states
https://doi.org/10.17586/2220-8054-2025-16-3-311-316
Abstract
Phase-randomized coherent states are widely used in various applications of quantum optics. They are best known to be the core part of decoy-state quantum key distribution protocols with phase-coding. From the perspective of future development of quantum protocol architecture, it is important to determine whether phase randomization can be applied at an arbitrary stage of an optical scheme without affecting the informational properties of the quantum system. In this paper, using the superoperator formalism, we have shown that phase randomization of a two-mode coherent state commutes with linear optical transformations. This implies that phase randomization can be applied virtually at any point within the optical setup. We further demonstrate that the Holevo bound for such a state coincides with that of regular coherent states, bearing in mind that the Holevo bound quantifies only the maximum amount of information accessible to an eavesdropper. Advantages of phase-randomized coherent states compare to regular ones in particular cases of eavesdropper’s strategies should be considered separately. Also, these findings indicate that phase randomization can be directly applied to a subcarrier wave quantum key distribution type of systems, opening prospects for its future development.
Keywords
About the Authors
M. S. GuselnikovRussian Federation
Mikhail S. Guselnikov
3b Kadetskaya Line, 199034 Saint Petersburg
A. A. Gaidash
Russian Federation
Andrei A. Gaidash
3b Kadetskaya Line, 199034 Saint Petersburg
8 Gubkina Street, 119991 Moscow
G. P. Miroshnichenko
Russian Federation
George P. Miroshnichenko
3b Kadetskaya Line, 199034 Saint Petersburg
A. V. Kozubov
Russian Federation
Anton V. Kozubov
3b Kadetskaya Line, 199034 Saint Petersburg
8 Gubkina Street, 119991 Moscow
References
1. Zhang Y., Wei K., Xu F. Generalized Hong-Ou-Mandel quantum interference with phase-randomized weak coherent states. Physical Review A, 2020, 101(3), P. 033823.
2. Bennett C., Bessette F., Brassard G.,Salvail L., and Smolin J. Experimental quantum cryptography. Journal of cryptology, 1992, 5(3).
3. Gobby C., Yuan Z., and Shields A. Quantum key distribution over 122 km of standard telecom fiber. Applied Physics Letters, 2004, 84, P. 3762.
4. Bogdanski J., Ahrens J., Bourennane M. Sagnac quantum key distribution and secret sharing. In Quantum Communications Realized II, SPIE, 2009, 7236, P. 120–127.
5. Mo X., Zhu B., Han Z., Gui Y., Guo G. Faraday-Michelson system for quantum cryptography. textitOptics letters, 2005, textbf30(19), P. 2632– 2634.
6. Brougham T., Barnett S., McCusker K., Kwiat P., Gauthier D. Security of high-dimensional quantum key distribution protocols using Franson interferometers. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46(10), P. 104010.
7. Vorontsova I., Goncharov R., Kynev S., Kiselev F., Egorov V. Measurement-device-independent continuous variable quantum key distribution protocol operation in optical transport networks. Nanosystems: Physics, Chemistry, Mathematics, 2023, 14(3), P. 342–348.
8. Latypov I.Z., Chistiakov V.V., Fadeev M.A., Sulimov D.V., Khalturinsky A.K., Kynev S.M., Egorov V.I. Hybrid quantum communication protocol for fiber and atmosphere channel. Nanosystems: Physics, Chemistry, Mathematics, 2024, 15(5), P. 654–657.
9. Lo H.-K., Preskill J. Phase randomization improves the security of quantum key distribution. arXiv preprint quant-ph/0504209, 2005.
10. Lo H.K., Ma X., and Chen K. Decoy state quantum key distribution. Physical review letters, 2005, 94(23), P. 230504.
11. Allevi A., Bondani M., Marian P., Marian T., and Olivares S. Characterization of phase-averaged coherent states. Journal of the Optical Society of America B, 2013, 30(10), P. 2621–2627.
12. Allevi A., Olivares S., Bondani M.Manipulating the non-Gaussianity of phase-randomized coherent state. Optics Express, 2012, 20(22), P. 24850–24855.
13. Wang Q., Wang X.B. Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Scientific reports, 2014, 4(1), P. 4612.
14. Valente P., Lezama A. Probing single-photon state tomography using phase-randomized coherent states. Journal of the Optical Society of America B, 2017, 34(5), P. 924–929.
15. Moschandreou E., Garcia J.I., Rollick B.J., Qi B., Pooser R., and Siopsis G. Experimental study of Hong-Ou-Mandel interference using independent phase randomized weak coherent states. Journal of Lightwave Technology, 2018, 36(17), P. 3752–3759.
16. Glerean F., Rigoni E.M., Jarc G., Mathengattil S.Y., Montanaro A., Giusti F., et.al. Ultrafast pump-probe phase-randomized tomography. Light: Science and Applications, 2018, 14(1), P. 115.
17. Zhao Y., Qi B., and Lo H.K. Experimental quantum key distribution with active phase randomization. Applied physics letters, 2007, 90(4), P. 044106.
18. Gaidash A., Kozubov A., Kiselev A., and Miroshnichenko G. Algebraic approach for investigation of a multi-mode quantum system dynamics. arXiv preprint arXiv:2207.01383, 2022.
19. Ivanovic A.D. How to differentiate between non-orthogonal states. Physics Letters A, 1987, 123(6), P. 257–259.
20. Peres A., Terno D.R. Optimal distinction between non- orthogonal quantum states. Journal of Physics A: Mathematical and General, 1998, 31(34), P. 7105.
21. Chefles A. Unambiguous discrimination between linearly inde- pendent quantum states. Physics Letters A, 1998, 239(6), P. 339–347.
22. Kozubov A., Gaidash A., and Miroshnichenko G. Quantum control attack: Towards joint estimation of protocol and hardware loopholes. Physical Review A, 2021, 104(2), P. 022603.
23. Gaidash A., Miroshnichenko G., and Kozubov A. Sub-carrier wave quantum key distribution with leaky and flawed devices. Journal of the Optical Society of America B, 2022, 39(2), P. 577–585.
24. Miroshnichenko G., Kozubov A., Gaidash A., Gleim A.V., and Horoshko D.V. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack. Optics express, 2018, 26(9), P. 11292–11308.
25. Sajeed Sh., Chaiwongkhot P., Huang A., Qin H., Egorov V., Kozubov A., Gaidash A., Chistiakov V., Vasiliev V., Gleim A., et al. An approach for security evaluation and certification of a complete quantum communication system. Scientific Reports, 2021, 11(1), P. 1–16.
26. Chistiakov V., Kozubov A., Gaidash A., Gleim A., and Miroshnichenko G. Feasibility of twin-field quantum key distribution based on multi-mode coherent phase-coded states. Optics express, 2019, 27(25), P. 36551–36561.
27. Samsonov E., Goncharov R., Gaidash A., Kozubov A., Egorov V., and Gleim A. Subcarrier wave continuous variable quantum key distribution with discrete modulation: mathematical model and finite-key analysis. Scientific Reports, 2020, 10(1), P. 1–9.
28. Miroshnichenko G., Kiselev A., Trifanov A., Gleim A. Algebraic approach to electro-optic modulation of light: exactly solvable multimode quantum model. Journal of the optical society of America B, (2017), 34(6), P. 1177–1190.
29. Cao Zh., Zhang Zh., Lo H.-K., and Ma X. Discrete-phase-randomized coherent state source and its application in quantum key distribution. New Journal of Physics, 2015, 17(5), P. 053014.
30. Wang R.-Q., Yin Zh.-Q., Jin X.-H., Wang R., Wang Sh., Chen W., Guo G.-C., and Han Zh.-Fu. Finite-key analysis for quantum key distribution with discrete-phase randomization. Entropy, 2023, 25(2), P. 258.
31. Nahar Sh., Upadhyaya T., and L¨utkenhaus N. Imperfect phase randomization and generalized decoy-state quantum key distribution. Physical Review Applied, 2023, 20(6), P. 064031.
Review
For citations:
Guselnikov M.S., Gaidash A.A., Miroshnichenko G.P., Kozubov A.V. Properties of multi-moded phase-randomized coherent states. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(3):311-316. https://doi.org/10.17586/2220-8054-2025-16-3-311-316