Optimality of linear vacancy defect for skyrmion nucleation
https://doi.org/10.17586/2220-8054-2025-16-3-317-324
Abstract
Magnetic skyrmions offer a pathway to ultra-dense, low-power memory, but writing them efficiently remains a challenge. Using atomistic spin simulations and minimum energy path calculations in a PdFe/Ir(111) film, we show that deliberately placing linear chains of four atomic vacancies cuts the skyrmion nucleation barrier nearly in half-down to 44.7 meV at 3.75 T-compared to 85 meV in a pristine track. Linear defects excel because they remove high-energy core regions during skyrmion creation while minimally disturbing its outer negative energy halo during depinning. This geometry-driven effect relies only on generic energy density profiles, making it broadly applicable to all skyrmion-hosting materials.
About the Authors
M. N. PotkinaRussian Federation
Maria N. Potkina – Infochemistry Scientific Center
197101 St. Petersburg
I. S. Lobanov
Russian Federation
Igor S. Lobanov – Faculty of Physics
197101 St. Petersburg
References
1. Bogdanov A.N., R¨ossler U.K. Chiral Symmetry Breaking in Magnetic Thin Films and Multilayers. Phys. Rev. Lett., 2001, 87, P. 037203.
2. Romming N., Hanneken C., Menzel M., Bickel J.E., Wolter B., von Bergmann K., Kubetzka A., Wiesendanger R. Writing and Deleting Single Magnetic Skyrmions. Science, 2013, 341(6146), P. 636–639.
3. Fert A., Cros V., Sampaio J. Skyrmions on the track. Nat. Nanotechnol., 2013, 8, P. 152–156.
4. Woo S., Litzius K., Kr¨uger B., Im M.-Y., Caretta L., Richter K., Mann M., Krone A., Reeve R. M., Weigand M., Agrawal P., Lemesh I., Mawass M.-A., Fischer P., Kl¨aui M., Beach G. S. D. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater., 2016, 15, P. 501.
5. Uzdin V.M., Potkina M.N., Lobanov I.S., Bessarab P.F., J´onsson H. The effect of confinement and defects on the thermal stability of skyrmions. Physica B: Condensed Matter, 2018, 549, P. 6–9.
6. Uzdin V.M., Potkina M.N., Lobanov I.S., Bessarab P.F., J´onsson H. Energy surface and lifetime of magnetic skyrmions. J. Magn. Magn. Mater., 2018, 459, P. 236–240.
7. Potkina M.N., Lobanov I.S., Uzdin V.M. Nonmagnetic impurities in skyrmion racetrack memory. Nanosystems: Phys., Chem., Math., 2020, 11(6), P. 628–635.
8. Stosic D., Ludermir B.T., Miloˇsevi´c V.M. Pinning of magnetic skyrmions in a monolayer Co film on Pt(111): Theoretical characterization and exemplified utilization. Phys. Rev. B, 2017, 96(21), P. 214403.
9. Fernandes I.L., Bouaziz J., Bl¨ugel S., Lounis S. Universality of defect-skyrmion interaction profiles. Nat. Commun., 2018, 9(1), P. 4395.
10. Castell-Queralt J., Gonz´alez-G´omez L., Del-Valle N., Sanchez A., Navau C. Accelerating, guiding, and compressing skyrmions by defect rails. Nanoscale, 2019, 11(26), P. 12589–12594.
11. Suess D., Vogler C., Bruckner F., Heistracher P., Slanovc F., Abert C. Spin torque efficiency and analytic error rate estimates of skyrmion. Sci. Rep., 2019, 9, P. 4827.
12. Morshed M.G., Vakili H., Ghosh A.W. Positional stability of skyrmions in a racetrack memory with notched geometry. Phys. Rev. Applied, 2022, 17, P. 064019.
13. Belrhazi H., El Hafidi M. Nucleation and manipulation of single skyrmions using spin-polarized currents in antiferromagnetic skyrmion-based racetrack memories. Sci. Rep., 2022, 12, P. 15225.
14. Hanneken C., Kubetzka A., von Bergmann K., Wiesendanger R. Pinning and movement of individual nanoscale magnetic skyrmions via defects. New J. Phys., 2016, 18(5), P. 055009.
15. Li W., Wang X., Dai Y., Bian Y., Huang Q., Zhang X., Su L., Zhang B., Tang D., Yang Y. Voltage-controlled skyrmion deletion device based on magnetic defects. J. Phys. D: Appl. Phys., 2021, 54, P. 445001.
16. Potkina M.N., Lobanov I.S., Uzdin V.M. Fine energy structure of a magnetic skyrmion localized on a nonmagnetic impurity in an external magnetic field. Physics of Complex Systems, 2020, 1(4), P. 165–168.
17. Choi H.C., Lin S.Z., Zhu J.X. Density functional theory study of skyrmion pinning by atomic defects in MnSi. Phys. Rev. B, 2016, 93, P. 115112.
18. Arjana I.G., Fernandes I.L., Chico J., Lounis S. Sub-nanoscale atom-by-atom crafting of skyrmion-defect interaction profiles. Sci. Rep., 2020, 10, P. 14655.
19. Iwasaki J., Mochizuki M., Nagaosa N. Universal current-velocity relation of skyrmion motion in chiral magnets. Nat. Commun., 2013, 4(1), P. 1463.
20. Koshibae W., Nagaosa N. Theory of current-driven skyrmions in disordered magnets. Sci. Rep., 2018, 8(1), P. 6328.
21. Toscano D., Leonel S.A., Coura P.Z., Sato F. Building traps for skyrmions by the incorporation of magnetic defects into nanomagnets: Pinning and scattering traps by magnetic properties engineering. J. Magn. Magn. Mater., 2019, 480, P. 171.
22. Everschor-Sitte K., Sitte M., Valet T., Abanov A., Sinova J. Skyrmion production on demand by homogeneous DC currents. New J. Phys., 2017, 19, P. 092001.
23. Mulkers J., Waeyenberge B.V., Miloˇsevi´c M.V. Effects of spatially engineered Dzyaloshinskii-Moriya interaction in ferromagnetic films. Phys. Rev. B, 2017, 95, P. 144401.
24. Derras-Chouk A., Chudnovsky E.M. Skyrmions near defects. J. Phys.: Condens. Matter, 2021, 33, P. 195802.
25. M¨uller J., Rosch A. Capturing of a magnetic skyrmion with a hole. Phys. Rev. B, 2015, 91(5), P. 054410.
26. Liu Y.H., Li Y.Q. A mechanism to pin skyrmions in chiral magnets. J. Phys.: Condens. Matter, 2013, 25, P. 076005.
27. Martinez J.C., Jalil M.B.A. Topological dynamics and current-induced motion in a skyrmion lattice. New J. Phys., 2016, 18, P. 033008.
28. Navau C., Del-Valle N., Sanchez A. Interaction of isolated skyrmions with point and linear defects. J. Magn. Magn. Mater., 2018, 465, P. 709.
29. Lin S.Z., Reichhardt C., Batista C.D., Saxena A. Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep. Phys. Rev. B, 2013, 87, P. 214419.
30. Gonz´alez-G´omez L., Castell-Queralt J., Del-Valle N., Sanchez A., Navau C. Analytical modeling of the interaction between skyrmions and extended defects. Phys. Rev. B, 2019, 100, P. 054440.
31. Hagemeister J., Romming N., von Bergmann K., Vedmedenko E.Y., Wiesendanger R. Stability of single skyrmionic bits. Nat. Commun., 2015, 6(1), P. 8455.
32. Lobanov I.S., Uzdin V.M. The lifetime of micron scale topological chiral magnetic states with atomic resolution. Comp. Phys. Commun., 2021, 269, P. 108136.
33. Bessarab P.F., Uzdin V.M., J´onsson H. Harmonic transition-state theory of thermal spin transitions. Phys. Rev. B, 2012, 85(18), P. 184409.
34. Weinan E., Ren W., Vanden-Eijnden E. String method for the study of rare events. Phys. Rev. B, 2002, 66, P. 052301.
35. Lobanov I.S., Potkina M.N., J´onsson H., Uzdin V.M. Truncated minimum energy path method for finding first order saddle points. Nanosystems: Phys., Chem., Math., 2017, 8(5), P. 586–595.
36. Wang X.S., Yuan H.Y., Wang X.R. A theory on skyrmion size. Commun. Phys., 2018, 1, P. 31.
37. Potkina M.N., Lobanov I.S. Nucleation of magnetic skyrmions at a notch. Nanosystems: Phys., Chem., Math., 2024, 15(2), P. 192–200.
38. Wang W., Song D., Wei W., Nan P., Zhang S., Ge B., Tian M., Zang J., Du H. Electrical manipulation of skyrmions in a chiral magnet. Nat. Commun., 2022, 13, P. 1593.
39. Yu X. Z., Morikawa D., Nakajima K., Shibata K., Kanazawa N., Arima T., Nagaosa N., Tokura Y. Motion tracking of 80-nm-size skyrmions upon directional current injections. Sci. Adv., 2020, 6, P. eaaz9744.
40. Twitchett-Harrison A.C., Loudon J.C., Pepper R.A., Birch M.T., Fangohr H., Midgley P.A., Balakrishnan G., Hatton P.D. Confinement of skyrmions in nanoscale FeGe device-like structures. ACS Appl. Electron. Mater., 2022, 4(9), P. 4427–4437.
41. B¨uttner F., Lemesh I., Schneider M., Pfau B., G¨unther C.M., Hessing P., Geilhufe J., Caretta L., Engel D., Kr¨uger B., Viefhaus J., Eisebitt S., Beach G.S.D. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques. Nat. Nanotech., 2017, 12, P. 1040–1044.
Supplementary files
Review
For citations:
Potkina M.N., Lobanov I.S. Optimality of linear vacancy defect for skyrmion nucleation. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(3):317-324. https://doi.org/10.17586/2220-8054-2025-16-3-317-324