Magnetic structure of domain walls in stressed cylindrical wires
https://doi.org/10.17586/2220-8054-2025-16-3-325-332
Abstract
We investigate the internal structure and dynamics of transverse domain walls in amorphous, stressed ferromagnetic microwires by comparing two magnetoelastic anisotropy models. In the complete model, all three principal stress components (axial, radial, circumferential) extracted from a realistic stress profile are converted into spatially varying anisotropies; in the reduced model, only the dominant stress component in each radial region is retained. Micromagnetic simulations reveal that the reduced model produces exaggerated peripheral deviations-stronger radial magnetization projections and deeper penetration of the disturbed layer-compared to the complete model. Energy analysis show that omitting non-dominant anisotropy leads to underestimation of domain wall-defect interactions and a sharp, shell-like radial ordering at higher values of surface anisotropy. Furthermore, dissipation calculations based on the Thiele approach indicate that the reduced model overestimates domain wall velocity by up to 50%. These results demonstrate that incorporating the full stress tensor is essential for accurate prediction of both static domain wall profiles and their dynamic response in stressed microwires.
Keywords
About the Authors
K. A. ChichayRussian Federation
Ksenia A. Chichay
St. Petersburg, 197101
I. S. Lobanov
Russian Federation
Igor S. Lobanov
St. Petersburg, 197101
V. M. Uzdin
Russian Federation
Valery M. Uzdin
St. Petersburg, 197101
References
1. Bukharaev A.A., Zvezdin A.K., Pyatakov A.P., Fetisov Y.K. Straintronics: a new trend in micro- and nanoelectronics and materials science. Physics-Uspekhi, 2018, 61(12), P. 1175.
2. Bandyopadhyay S., Atulasimha J., and Barman A. Straintronics: Manipulating the Magnetization of Magnetostrictive Nanomagnets with Strain for Energy-Efficient Applications. Applied Physics Reviews, 2021, 8, P. 041323.
3. Pyatakov A., Zvezdin A. Magnetoelectric and multiferroic media. Physics-Uspekhi, 2012, 55(6), P. 557–581.
4. Alam J., et.al. Cylindrical micro and nanowires: Fabrication, properties and applications. J. Magn. Magn. Mater., 2020, 513, P. 167074.
5. Chiriac H., Corodeanu S., Lostun M., Stoian G., Ababei G., and O´ va´ri T.A. Rapidly solidified amorphous nanowires, J.Appl. Phys., 2011. 109(6), P. 063902.
6. Baranov S.A., Larin V.S., Torcunov A.V., Technology, Preparation and Properties of the Cast Glass-Coated Magnetic Microwires. Crystals, 2017. 7(136).
7. Chiriac H., Ovari T.A. and Pop Gh. Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B, 1995, 42, P. 10104.
8. Liu K., Lu Z., Liu T., Li D. Measurement of internal tensile stress in Co68:2Fe4:3Cr3:5Si13B11 glass-coated amorphous microwires using the stress sensitivity of saturation magnetostriction. J. Magn. Magn. Mater., 2013. 339, P. 124–126.
9. Chiriac H., Ovari T.-A., Switching field calculations in amorphous microwires with positive magnetostriction. J.Magn. Magn. Mater., 2002, 249, P. 141–145.
10. Churyukanova M., Semenkova V., Kaloshkin S., Shuvaeva E., Gudoshnikov S., Zhukova V., and Zhukov A., Magnetostriction investigation of soft magnetic microwires. Phys. Stat. Sol. (a), 2016, 213(2), P. 363–367.
11. Aksenova O.I., Orlova N., Churyukanova M.N., Aronin A.S. Stress state effect on the magnetic properties of amorphous microwires. J.Magn. Magn. Mater., 2020, 495, P. 165878.
12. Nematov M.G., Baraban I., Yudanov N.A., Rodionova V., Qin F.X., Peng H.-X., Panina L.V., Evolution of the magnetic anisotropy and magnetostriction in Cobased amorphous alloys microwires due to current annealing and stress-sensory applications. J. Alloys. Compd., 2020, 837, P. 155584.
13. Chiriac H., Ovari T.–A., Zhukov A. Magnetoelastic anisotropy of amorphous microwires. J. Magn. Magn. Mater., 2003, 496, P. 254–255.
14. Zhukova V., Blanco J.M., Ipatov M., Zhukov A. Magnetoelastic contribution in domain wall dynamics of amorphous microwires. Physica B, 2012, 407, P. 1450–1454.
15. Chichay K.A., Lobanov I.S. Uzdin V.M. tability and transformations of domain walls in cylindrical wires. Nanosystems: Phys. Chem. Math., 2024, 15(3), P. 332–339.
16. Chichay K.A., Lobanov I.S., Uzdin V.M. The structure of magnetic domain walls in cylindrical nano- and microwires with in- homogeneous anisotropy. Nanosystems: Phys. Chem. Math., 2023, 15(1), P. 55–59.
17. Thiele A.A. Steady-state motion of magnetic domains. Phys. Rev. Lett., 1973, 30, P. 230–233.
18. Lobanov I.S., Uzdin V.M. Dynamics of ”Breathing” Skyrmions. JETP Letters, 2024, 119(10), P. 768–774.
Review
For citations:
Chichay K.A., Lobanov I.S., Uzdin V.M. Magnetic structure of domain walls in stressed cylindrical wires. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(3):325-332. https://doi.org/10.17586/2220-8054-2025-16-3-325-332