Sub-Poissonian light in fluctuating thermal-loss bosonic channels
https://doi.org/10.17586/2220-8054-2025-16-3-333-342
Abstract
We study the photon statistics of a single-mode sub-Poissonian light propagating in the lossy thermal bosonic channel with fluctuating transmittance which can be regarded as a temperature-dependent model of the turbulent atmosphere. By assuming that the variance of the transmittance can be expressed in terms of the fluctuation strength parameter we show that the photon statistics of the light remains sub-Poissonian provided the averaged transmittance exceeds its critical value. The critical transmittance is analytically computed as a function of the input states’ parameters, temperature, and the fluctuation strength. The results are applied to study special cases of the one-mode squeezed states and the odd optical Shr¨odinger cats.
About the Authors
I. StepanovRussian Federation
Ilia Stepanov
Kadetskaya Line, 3, St. Petersburg, 199034
R. Goncharov
Russian Federation
Roman Goncharov
Kadetskaya Line, 3, St. Petersburg, 199034
Birzhevaya Line, 16, Saint Petersburg, 199034
6th Vasilyevskogo Ostrova Line, 59, Saint Petersburg, 199178
A. D. Kiselev
Russian Federation
Alexei D. Kiselev
Birzhevaya Line, 16, Saint Petersburg, 199034
Kadetskaya Line 3b, Saint Petersburg 199034
References
1. Kenfack A. and Zyczkowski K. Negativity of the Wigner function as an indicator of non-classicality. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6(10), P. 396.
2. Teich M.C. and Saleh B.E.A. Squeezed state of light. Quantum Optics: Journal of the European Optical Society Part B, 1989, 1(2), P. 153–191.
3. Lvovsky A.I. Squeezed Light, ch. 5, P. 121–163. John Wiley & Sons, Ltd, 2015.
4. Davidovich L. Sub-Poissonian processes in quantum optics. Rev. Mod. Phys., 1996, 68, P. 127–173.
5. Goldberg A.Z., Klimov A.B., Grassl M., Leuchs G., and S´anchez-Soto L.L. Extremal quantum states. AVS Quantum Science, 2020, 2(4), P. 044701.
6. Tan K.C. and Jeong H. Nonclassical light and metrological power: An introductory review. AVS Quantum Science, 2019, 1(1) P. 014701.
7. Li R.-D., Choi S.-K., Kim C., and Kumar P. Generation of sub-Poissonian pulses of light. Phys. Rev. A, 1995, 51, P. R3429–R3432.
8. Peˇrina J.,Mich´alek V., Machulka R., and Haderka O. Two-beam light with simultaneous anticorrelations in photon-number fluctuations and sub-Poissonian statistics. Phys. Rev. A, 2021, 104, P. 013712.
9. Iskhakov T.S., Usenko V.C., Andersen U.L., Filip R., Chekhova M.V., and Leuchs G. Heralded source of bright multi-mode mesoscopic sub- Poissonian light. Opt. Lett., 2016, 41, P. 2149–2152.
10. Lal N., Shajilal B., Anwar A., Perumangatt C., and Singh R.P., Observing sub-Poissonian statistics of twisted single photons using oscilloscope. Review of Scientific Instruments, 2019, 90(11), P. 113104.
11. Samedov V.V. Discovery of sub-Poissonian statistics of light photons in scintillators that did not take place. Physics of Atomic Nuclei, 2019, 84(11), P. 2048–2054.
12. Berchera I.R. and Degiovanni I.P. Quantum imaging with sub-Poissonian light: challenges and perspectives in optical metrology. Metrologia, 2019, 56, P. 024001.
13. Erenso D., Vyas R., and Singh S. Higher-order sub-Poissonian photon statistics in terms of factorial moments. J. Opt. Soc. Am. B, 2002, 19, P. 1471–1475.
14. Peˇrina J., Mich´alek V., and Haderka O. Higher-order sub-Poissonian-like nonclassical fields: Theoretical and experimental comparison. Phys. Rev. A, 2017, 96, P. 033852.
15. Waks E., Santori C., and Yamamoto Y. Security aspects of quantum key distribution with sub-Poisson light. Phys. Rev. A, 2002, 66, P. 042315.
16. Kupko T., M. von Helversen, Rickert L., Schulze J.-H., Strittmatter A., Gschrey M., Rodt S., Reitzenstein S., and Heindel T. Tools for the performance optimization of single-photon quantum key distribution. npj Quantum Information, 2020, 6(1), P. 29.
17. Pirandola S., Andersen U.L., Banchi L., Berta M., Bunandar D., Colbeck R., Englund D., Gehring T., Lupo C., Ottaviani C., Pereira J.L., Razavi M., Shaari J.S., Tomamichel M., Usenko V.C., Vallone G., Villoresi P., and Wallden P., Advances in quantum cryptography. Adv. Opt. Photon., 2020, 12, P. 1012–1236.
18. Goncharov R.K., Kiselev A.D., Samsonov E.O., and Egorov V.I. Continuous-variable quantum key distribution: security analysis with trusted hard-ware noise against general attacks. Nanosystems: Physics, Chemistry, Mathematics, 2022, 13, P. 372–391.
19. Peuntinger C., Heim B., M¨uller C.R., Gabriel C., Marquardt C., and Leuchs G. Distribution of squeezed states through an atmospheric channel. Phys. Rev. Lett., 2014, 113, P. 060502.
20. Heim B., Peuntinger C., Killoran N., Khan I., Wittmann C., Marquardt C., and Leuchs G. Atmospheric continuous-variable quantum communication. New Journal of Physics, 2014, 16, P. 113018.
21. Derkach I., Usenko V.C., and Filip R. Squeezing-enhanced quantum key distribution over atmospheric channels. New Journal of Physics, 2020, 22, P. 053006.
22. Pirandola S. Limits and security of free-space quantum communications. Phys. Rev. Res., 2021, 3, P. 013279.
23. Kravtsov Y.A. Propagation of electromagnetic waves through a turbulent atmosphere. Reports on Progress in Physics, 1992, 55, P. 39–112.
24. Milonni P.W., Carter J.H., Peterson C.G., and Hughes R.J. Effects of propagation through atmospheric turbulence on photon statistics. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, P. S742.
25. Kiesel T., Vogel W., Parigi V., Zavatta A., and Bellini M. Experimental determination of a nonclassical Glauber-Sudarshan P function. Phys. Rev. A, 2008, 78, P. 021804.
26. Semenov A.A. and Vogel W. Quantum light in the turbulent atmosphere. Phys. Rev. A, 2009, 80, P. 021802.
27. Vasylyev D.Y., Semenov A.A., and VogelW. Toward global quantum communication: Beam wandering preserves nonclassicality. Phys. Rev. Lett., 2012, 108, P. 220501.
28. Gumberidze M.O., Semenov A.A., Vasylyev D., and Vogel W., Bell nonlocality in the turbulent atmosphere. Phys. Rev. A, 2016, 94, P. 053801.
29. Vasylyev D., Semenov A.A., and VogelW. Atmospheric quantum channels with weak and strong turbulence. Phys. Rev. Lett., 2016, 117, P. 090501.
30. Bohmann M., Semenov A.A., Sperling J., and Vogel W. Gaussian entanglement in the turbulent atmosphere. Phys. Rev. A, 2016, 94, P. 010302.
31. Avetisyan H. and Monken C.H. Higher order correlation beams in atmosphere under strong turbulence conditions. Opt. Express, 2016, 24, P. 2318–2335.
32. Bohmann M., Sperling J., Semenov A.A., and Vogel W. Higher-order nonclassical effects in fluctuating-loss channels. Phys. Rev. A, 2017, 95, P. 012324.
33. Vasylyev D., Vogel W., and Semenov A.A. Theory of atmospheric quantum channels based on the law of total probability. Phys. Rev. A, 2018, 97, P. 063852.
34. Vasylyev D., Vogel W., and Moll F. Satellite-mediated quantum atmospheric links. Phys. Rev. A, 2019, 99, P. 053830.
35. Klen M. and Semenov A.A. Numerical simulations of atmospheric quantum channels. Phys. Rev. A, 2023, 108, P. 033718.
36. Kiselev A.D., Ali R., and Rybin A.V. Lindblad dynamics and disentanglement in multi-mode bosonic systems. Entropy, 2021, 23(11), P. 1409.
37. Mandel L. and Wolf E. Optical Coherence and Quantum Optics. Cambridge, Cambridge University Press, 1995.
38. Mandel L. Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett., 1979, 4, P. 205–207.
39. Short R. and Mandel L. Observation of sub-Poissonian photon statistics. Phys. Rev. Lett., 1983, 51, P. 384–387.
40. Banakh V.A. and Mironov V.L. Phase approximation of the Huygens–Kirchhoff method in problems of laser-beam propagation in the turbulent atmosphere. Opt. Lett., 1977, 1(5), P. 172–174.
41. Banakh V.A. and Mironov V.L. Phase approximation of the Huygens–Kirchhoff method in problems of space-limited optical-beam propagation in turbulent atmosphere. Opt. Lett., 1979, 4(8), P. 259–261.
Review
For citations:
Stepanov I., Goncharov R., Kiselev A.D. Sub-Poissonian light in fluctuating thermal-loss bosonic channels. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(3):333-342. https://doi.org/10.17586/2220-8054-2025-16-3-333-342