Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Epoxide-mediated synthesis of germania aerogels in acetic acid

https://doi.org/10.17586/2220-8054-2025-16-3-343-351

Abstract

A novel alkoxide-free method for the sol-gel synthesis of germania aerogels is proposed. The method is based on the hydrolysis of GeCl4 by propylene oxide in concentrated acetic acid which is used as a solvent. The proposed protocol allows one to obtain monolithic amorphous germania aerogels constructed of a three-dimensional network of nanoscale (⁓20 nm) particles and possessing specific surface area of about 80 m2/g. The addition of hydrochloric acid to the reaction mixture results in the synthesis of nanocrystalline GeO2 (hexagonal system) aerogels. The synthesized materials were characterized by X-ray diffraction, IR spectroscopy, scanning electron microscopy and low temperature nitrogen adsorption.

About the Authors

O. M. Gajtko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Olga M. Gajtko

Moscow



S. V. Golodukhina
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Svetlana V. Golodukhina

Moscow



S. Yu. Kottsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Sergey Yu. Kottsov

Moscow



A. G. Son
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Alexandra G. Son

Moscow



T. O. Kozlova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Taisiya O. Kozlova

Moscow



A. E. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Alexander E. Baranchikov

Moscow



References

1. Bioud Y.A., Paradis E., Boucherif A., Drouin D., Ar`es R. Shape Control of Cathodized Germanium Oxide Nanoparticles. Electrochem. Commun., 2021, 122, 106906.

2. Almuslem A.S., Hanna A.N., Yapici T., Wehbe N., Diallo E.M., Kutbee A.T., Bahabry R.R., Hussain M.M. Water Soluble Nano-Scale Transient Material Germanium Oxide for Zero Toxic Waste Based Environmentally Benign Nano-Manufacturing. Appl. Phys. Lett., 2017, 110 (7), 074103.

3. Simanzhenkov V., Ifeacho P., Wiggers H., Knipping J., Roth P. Synthesis of Germanium Oxide Nanoparticles in Low-Pressure Premixed Flames. J. Nanosci. Nanotechnol., 2004, 4 (1), P. 157–161.

4. Zhao Q., Lorenz H., Turner S., Lebedev O.I., Van Tendeloo G., Rameshan C., Kl¨otzer B., Konzett J., Penner S. Catalytic Characterization of Pure SnO2 and GeO2 in Methanol Steam Reforming. Appl. Catal. A Gen., 2010, 375 (2), P. 188–195.

5. Kim W.J., Soshnikova V., Markus J., Oh K.H., Anandapadmanaban G., Mathiyalagan R., Perez Z.E.J., Kim Y.J., Yang D.C. Room Temperature Synthesis of Germanium Dioxide Nanorods and Their in Vitro Photocatalytic Application. Optik (Stuttg)., 2019, 178, P. 664–668.

6. Trukhin A.N. Luminescence of Polymorph Crystalline and Glassy SiO2, GeO2: A Short Review. J. Non. Cryst. Solids, 2009, 355 (18–21), P. 1013–1019.

7. Shi R., Zhang R., Chen X., Yang F., Zhao Q., Yu J., Zhao H., Wang L., Liu B., Bao L., Chen Y., Yang H. Controllable Growth of GeO2 Nanowires with the Cubic and Hexagonal Phases and Their Photoluminescence. J. Cryst. Growth, 2011, 336 (1), P. 6–13.

8. Bose N., Basu M., Mukherjee S. Study of Optical Properties of GeO2 Nanocrystals as Synthesized by Hydrothermal Technique. Mater. Res. Bull., 2012, 47 (6), P. 1368–1373.

9. Walker B., Dharmawardhana C.C., Dari N., Rulis P., Ching W.Y. Electronic Structure and Optical Properties of Amorphous GeO2 in Comparison to Amorphous SiO2. J. Non. Cryst. Solids, 2015, 428, P. 176–183.

10. Zhang J., Yu T., Chen J., Liu H., Su D., Tang Z., Xie J., Chen L., Yuan A., Kong Q. Germanium-Based Complex Derived Porous GeO2 Nanoparticles for Building High Performance Li-Ion Batteries. Ceram. Int., 2018, 44 (1), P. 1127–1133.

11. Arro C.R., Mohamed A.T.I., Bensalah N. Impact of Ge Content on the Electrochemical Performance of Germanium Oxide/Germanium/ Reduced Graphene (GeO2/Ge/r-GO) Hybrid Composite Anodes for Lithium-Ion Batteries. Mater. Today Commun., 2022, 30 (January), 103151.

12. Han L., Wei Q., Chen H., Tang J., Wei M. Open-Framework Germanates Derived GeO2/C Nanocomposite as a Long-Life and High-Capacity Anode for Lithium-Ion Batteries. J. Alloys Compd., 2021, 881, 160533.

13. Mo R., Rooney D., Sun K. Hierarchical Graphene-Scaffolded Mesoporous Germanium Dioxide Nanostructure for High-Performance Flexible Lithium-Ion Batteries. Energy Storage Mater., 2020, 29, P. 198–206.

14. Wu Y., Yang P. Germanium Nanowire Growth via Simple Vapor Transport. Chem. Mater., 2000, 12 (3), P. 605–607.

15. Jiang Z., Xie T., Wang G.Z., Yuan X.Y., Ye C.H., Cai W.P., Meng G.W., Li G.H., Zhang L.D. GeO2 Nanotubes and Nanorods Synthesized by Vapor Phase Reactions. Mater. Lett., 2005, 59 (4), P. 416–419.

16. Mathur S., Shen H., Sivakov V.,Werner U. Germanium Nanowires and Core-Shell Nanostructures by Chemical Vapor Deposition of [Ge(C5H5)2]. Chem. Mater., 2004, 16 (12), P. 2449–2456.

17. Zhang X., Que W., Chen J., Zhang X., Hu J., Liu W. Concave Micro-Lens Arrays Fabricated from the Photo-Patternable GeO2/Ormosils Hybrid Sol-Gel Films. Opt. Mater., 2013, 35 (12), P. 2556–2560.

18. Hsu C.H., Lin J. Sen, He Y. Da, Yang S.F., Yang P.C., Chen W.S. Optical, Electrical Properties and Reproducible Resistance Switching of GeO2 Thin Films by Sol-Gel Process. Thin Solid Films, 2011, 519 (15), P. 5033–5037.

19. Wu X.C., SongW.H., Zhao B., Sun Y.P., Du J.J. Preparation and Photoluminescence Properties of Crystalline GeO2 Nanowires. Chem. Phys. Lett., 2001, 349, P. 210–214.

20. Zhang Y., Zhu J., Zhang Q., Yan Y., Wang N., Zhang X. Synthesis of GeO2 Nanorods by Carbon Nanotubes Template. Chem. Phys. Lett., 2000, 317, P. 504–509.

21. Krupanidhi S.B., Sayer M., Mansingh A. Electrical Characterization of Amorphous Germanium Dioxide Films. Thin Solid Films, 1984, 113 (3), P. 173–184.

22. Pierre A.C., Pajonk G.M. Chemistry of Aerogels and Their Applications. Chem. Rev., 2002, 102 (11), P. 4243–4266.

23. Ziegler C., Wolf A., Liu W., Herrmann A., Gaponik N., Eychm¨uller A. Modern Inorganic Aerogels. Angew. Chemie Int. Ed., 2017, 56 (43), P. 13200–13221.

24. Feng J., Su B.-L., Xia H., Zhao S., Gao C., Wang L., Ogbeide O., Feng J., Hasan T. Printed Aerogels: Chemistry, Processing, and Applications. Chem. Soc. Rev., 2021, 50 (6), P. 3842–3888.

25. Gurav J.L., Jung I.K., Park H.H., Kang E.S., Nadargi D.Y. Silica Aerogel: Synthesis and Applications. J. Nanomater., 2010, 2010.

26. Krishnan V., Gross S., M¨uller S., Armelao L., Tondello E., Bertagnolli H. Structural Investigations on the Hydrolysis and Condensation Behavior of Pure and Chemically Modified Alkoxides. 2. Germanium Alkoxides. J. Phys. Chem. B, 2007, 111 (26), P. 7519–7528.

27. Livage J., Sanchez C. Sol-Gel Chemistry. J. Non. Cryst. Solids, 1992, 145, P. 11–19.

28. Shen J., Li Q., Zhou B., Wang J., Chen L. SiO2-GeO2 Binary Aerogels with Ultralow Density. J. Non. Cryst. Solids, 1997, 220 (1), P. 102–106.

29. Grandi S., Mustarelli P., Magistris A., Gallorini M., Rizzio E. Synthesis of GeO2-Doped SiO2 Aerogels and Xerogels. J. Non. Cryst. Solids, 2002, 303 (2), P. 208–217.

30. Kucheyev S.O., Baumann T.F.,Wang Y.M., van Buuren T., Poco J.F., Satcher J.H., Hamza A.V.Monolithic, High Surface Area, Three-Dimensional GeO2 Nanostructures. Appl. Phys. Lett., 2006, 88 (10), 103117.

31. Zhang L., Chen G., Chen B., Liu T., Mei Y., Luo X. Monolithic Germanium Oxide Aerogel with the Building Block of Nano-Crystals. Mater. Lett., 2013, 104, P. 41–43.

32. Chen G., Chen B., Liu T., Mei Y., Ren H., Bi Y., Luo X., Zhang L. The Synthesis and Characterization of Germanium Oxide Aerogel. J. Non. Cryst. Solids, 2012, 358 (23), P. 3322–3326.

33. Gash A.E., Tillotson T.M., Satcher J.H., Hrubesh L.W., Simpson R.L. New Sol-Gel Synthetic Route to Transition and Main-Group Metal Oxide Aerogels Using Inorganic Salt Precursors. J. Non. Cryst. Solids, 2001, 285 (1–3), P. 22–28.

34. Du A., Zhou B., Zhang Z., Shen J. A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel. Materials (Basel)., 2013, 6 (3), P. 941–968.

35. Veselova V.O., Kottsov S.Y., Golodukhina S. V., Khvoshchevskaya D.A., Gajtko O.M. Hydrophilic and Hydrophobic: Modified GeO2 Aerogels by Ambient Pressure Drying. Nanomaterials, 2024, 14 (18), 1511.

36. Gajtko O.M., Golodukhina S. V, Kottsov S.Y., Subcheva E.N., Volkov V.V., Kopitsa G.P., Son A.G., Veselova V.O. Hydrophobic GeO2 Aerogels by an Epoxide-Induced Process. Gels, 2025, 11 (4), 225.

37. St¨ocker C., Baiker A. Zirconia Aerogels: Effect of Acid-to-Alkoxide Ratio, Alcoholic Solvent and Supercritical Drying Method on Structural Properties. J. Non. Cryst. Solids, 1998, 223 (3), P. 165–178.

38. Aguado-Serrano J., Rojas-Cervantes M.L. Titania Aerogels. Microporous Mesoporous Mater., 2006, 88 (1–3), P. 205–213.

39. Dong W., Yen S., Paik J., Sakamoto J. The Role of Acetic Acid and Glycerol in the Synthesis of Amorphous MgO Aerogels. J. Am. Ceram. Soc., 2009, 92 (5), P. 1011–1016.

40. Poco J., Satcher J., Hrubesh L. Synthesis of High Porosity, Monolithic Alumina Aerogels. J. Non. Cryst. Solids, 2001, 285 (1–3), P. 57–63.

41. Shimoyama Y., Ogata Y., Ishibashi R., Iwai Y. Drying Processes for Preparation of Titania Aerogel Using Supercritical Carbon Dioxide. Chem. Eng. Res. Des., 2010, 88 (10), P. 1427–1431.

42. Sui R., Rizkalla A.S., Charpentier P.A. Synthesis and Formation of Silica Aerogel Particles By a Novel Sol-Gel Route in Supercritical Carbon Dioxide. J. Phys. Chem. B, 2004, 108 (32), P. 11886–11892.

43. Baumann T.F., Gash A.E., Satcher J.H. A Robust Approach to Inorganic Aerogels: The Use of Epoxides in Sol–Gel Synthesis. Aerogels Handb., 2011, P. 155–170.

44. Rondinini S., Longhi P., Mussini P.R., Mussini T. Autoprotolysis Constants in Nonaqueous Solvents and Aqueous Organic Solvent Mixtures. Pure Appl. Chem., 1987, 59 (12), P. 1693–1702.

45. Pokrovski G.S., Schott J. Experimental Study of the Complexation of Silicon and Germanium with Aqueous Organic Species: Implications for Germanium and Silicon Transport and Ge/Si Ratio in Natural Waters. Geochim. Cosmochim. Acta, 1998, 62 (21–22), P. 3413–3428.

46. Lobaz V., Rabyk M., P´anek J., Doris E., Nallet F., ˇ Stˇep´anek P., Hrub´y M. Photoluminescent Polysaccharide-Coated Germanium(IV) Oxide Nanoparticles. Colloid Polym. Sci., 2016, 294 (7), P. 1225–1235.

47. Javadi M., Yang Z., Veinot J.G.C. Surfactant-Free Synthesis of GeO2 Nanocrystals with Controlled Morphologies. Chemical Communications, 2014, 50 (46), P. 6101–6104.

48. Micoulaut M., Cormier L., Henderson G.S. The Structure of Amorphous, Crystalline and Liquid GeO2. J. Phys. Condens. Matter, 2006, 18 (45), R753–R784.

49. Błaszczak K., Adamczyk A., We¸dzikowska M., Rokita M. Infrared Studies of Devitrification Li2O:– B2O: 3–2GeO2 Glass. J. Mol. Struct., 2004, 704 (1–3), P. 275–279.

50. Veselova V.O., Khvoshchevskaya D.A., Golodukhina S. V., Kottsov S.Y., Gajtko O.M. One Simple Approach to Novel Germania and Germanate Aerogels. Microporous Mesoporous Mater., 2024, 379, 113282.

51. Kawai T., Usui Y., Kon-No K. Synthesis and Growth Mechanism of GeO2 Particles in AOT Reversed Micelles. Colloids Surfaces A Physicochem. Eng. Asp., 1999, 149 (1–3), P. 39–47.

52. Gofurov S., Makhmanov U., Kokhkharov A., Ismailova O.B. Structural and Optical Characteristics of Aqueous Solutions of Acetic Acid. Appl. Spectrosc., 2019, 73 (5), P. 503–510.

53. Hasan M.A., Zaki M.I., Pasupulety L. Oxide-Catalyzed Conversion of Acetic Acid into Acetone: An FTIR Spectroscopic Investigation. Appl. Catal. A Gen., 2003, 243 (1), P. 81–92.

54. Hudson R.L., Loeffler M.J., Yocum K.M. Laboratory Investigations into the Spectra and Origin of Propylene Oxide: A Chiral Interstellar Molecule. Astrophys. J., 2017, 835 (2), 225.

55. Madon M., Gillet P., Julien C., Price G.D. A Vibrational Study of Phase Transitions among the GeO2 Polymorphs. Phys. Chem. Miner., 1991, 18 (1), P. 7–18.

56. Kitschke P., Schulze S., Hietschold M., Mehring M. Synthesis of Germanium Dioxide Nanoparticles in Benzyl Alcohols – a Comparison. Main Gr. Met. Chem., 2013, 36 (5–6).

57. Bose N., Basu M., Mukherjee S. Study of Optical Properties of GeO2 Nanocrystals as Synthesized by Hydrothermal Technique. Mater. Res. Bull., 2012, 47 (6), P. 1368–1373.

58. Takemoto M., Tokudome Y., Noguchi D., Ueoka R., Kanamori K., Okada K., Murata H., Nakahira A., Takahashi M. Synthesis of a Crystalline and Transparent Aerogel Composed of Ni–Al Layered Double Hydroxide Nanoparticles through Crystallization from Amorphous Hydrogel. Langmuir, 2020, 36 (32), P. 9436–9442.

59. Khan I., Saeed K., Khan I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem., 2019, 12 (7), P. 908–931.

60. Tretyakov Y.D., Goodilin E.A. Key Trends in Basic and Application-Oriented Research on Nanomaterials. Russ. Chem. Rev., 2009, 78 (9), P. 801–820.


Review

For citations:


Gajtko O.M., Golodukhina S.V., Kottsov S.Yu., Son A.G., Kozlova T.O., Baranchikov A.E. Epoxide-mediated synthesis of germania aerogels in acetic acid. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(3):343-351. https://doi.org/10.17586/2220-8054-2025-16-3-343-351

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)