Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

TiO2 nanotubes modified with cadmium oxide for photoelectrocatalytic oxidation of alcohols

https://doi.org/10.17586/2220-8054-2025-16-3-352-363

Abstract

TiO2 nanotube (TNT) electrodes were fabricated by electrochemical anodization of titanium in ethylene glycol electrolyte with added NH4F (0.5 wt.%) and water (2 % w/w). The (TNT)-cadmium oxide (CdO) composite was fabricated using potentiostatic cathodic deposition. Structural properties of the obtained coatings have been investigated by scanning electron microscopy and X-Ray photoelectron spectroscopy, Raman spectroscopy, X-Ray diffraction and transmission electron microscopy. The TNT-CdO electrode demonstrates high efficiency in photoelectrochemical degradation of methanol, ethylene glycol, glycerol and sorbitol in aqueous solutions of 0.1 M Na2SO4 upon irradiation by a simulated sunlight. The highest photooxidation currents were obtained for sorbitol. Intensity-modulated photocurrent spectroscopy shows that the photoelectrocatalysis efficiency is due to suppression of the electron-hole pairs’ recombination and to increase in the rate of photo-induced charge transfer. Thus, the TNT-CdO composite is an effective photoanode for developing the technology of photoelectrochemical degradation of sorbitol and other alcohols by-products of biofuel production.

About the Authors

V. A. Grinberg
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Vitali A. Grinberg

Leninsky Prospekt 31, Building 4, 119071 Moscow



V. V. Emets
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Victor V. Emets

Leninsky Prospekt 31, Building 4, 119071 Moscow



A. V. Shapagin
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Aleksey V. Shapagin

Leninsky Prospekt 31, Building 4, 119071 Moscow



A. A. Averin
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Aleksey A. Averin

Leninsky Prospekt 31, Building 4, 119071 Moscow



A. A. Shiryaev
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Andrei A. Shiryaev

Leninsky Prospekt 31, Building 4, 119071 Moscow



References

1. Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater., 2003, 15, P. 353-389.

2. Banerjee S., Mohapatra S.K., Das P.P., Misra M. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem Mater., 2008, 20, P. 6784–6791.

3. Zwilling V., Darque-Ceretti E., Boutry-Forveille A., David D., Perrin M.Y., Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interface Anal., 1999, 27, P. 629–637.

4. Gong D., Grimes C.A., Varghese O.K., Hu W., Singh R.S., Chen Z., et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res., 2001, 16 (12), P. 3331–3334.

5. Mohapatra S.K., Misra M., Mahajan V.K., Raja K.S. Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: Application of TiO2-xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a Cathode. The J. of Physical Chemistry C, 2007, 111 (24), P. 8677–8685.

6. Roy P., Berger S., Schmuki P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed., 2011, 50, P. 2904–2939.

7. Smith Y.R., Subramanain V. Heterostructural Composites of TiO2 Mesh–TiO2 Nanoparticles Photosensitized with CdS: A New Flexible Photoanode for Solar Cells. J. Phys. Chem. C, 2011, 115, P. 8376–8385.

8. Liu Y., Zhou H., Zhou B., Li J., Chen H.,Wang. J., et al. Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation. Int. J. Hydrogen Energy, 2011, 36, P. 167–174.

9. Kongkanand A., Tvrdy K., Takechi K., Kuno M., Kamat P.V. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe–TiO2 Architecture. J. Am. Chem. Soc., 2008, 130, P. 4007–4015.

10. Hossain M.F., Biswas S., Zhang Z.H., Takahashi T. Bubble-like CdSe nanoclusters sensitized TiO2 nanotube arrays for improvement in solar cell. J. Photochem. Photobiol. A: Chem., 2011, 217, P. 68–75.

11. Banerjee S., Mohapatra S.K, Misra M. Water Photooxidation by TiSi2–TiO2 Nanotubes. J. Phys. Chem. C, 2011, 115 (25), P. 12643–12649.

12. Mohapatra S.K., Banerjee S., Misra M. Synthesis of Fe2O3/TiO2 nanorod–nanotube arrays by filling TiO2 nanotubes with Fe. Nanotechnology, 2008, 19, 315601.

13. Shrestha N.K., Yang M., Nah Y-C., Paramasivam I., Schmuki P. Self-organized TiO2 nanotubes: Visible light activation by Ni oxide nanoparticle decoration. Electrochem. Commun., 2010, 12, P. 254–257.

14. Dong W., Zhu C. Optical properties of surface-modified CdO nanoparticles. Opt. Mater., 2003, 22, P. 227–233.

15. Sarma B., Smith Y., Mohanty S.K., Misra M. Electrochemical deposition of CdO on anodized TiO2 nanotube arrays for enhanced photoelectrochemical properties. Materials Letters, 2012, 85, P. 33–36.

16. Wang X., Cheng K. , Dou S., Chen Q., Wang J., Song Z., Zhang J., Song H. Enhanced photoelectrochemical performance of CdO-TiO2 nanotubes prepared by direct impregnation. Applied Surface Science, 2019, 476, P. 136–143.

17. Tang D., Lu G., Shen Z., Hu Y. , Yao L., Li B., Zhao G., Peng B., Huang X. A review on photo-, electro- and photoelectro- catalytic strategies for selective oxidation of alcohols. J. of Energy Chemistry, 2023, 77, P. 80–118.

18. Ruppert A.M., Weinberg K., Palkovits R. Hydrogenolyse goes Bio: Von Kohlenhydraten und Zuckeralkoholen zu Plattformchemikalien. Angew. Chem., 2012, 124, P. 2614– 2654.

19. Cortright R.D., Davda R.R., Dumesic J.A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 2002, 418, P. 964–967.

20. Metzger J.O. Production of Liquid Hydrocarbons from Biomass. Angew. Chem. Int. Ed., 2006, 45, P. 696–698.

21. Huber G.W., Shabaker J.W., Dumesic J.A. Raney Ni–Sn Catalyst for H2 Production from Biomass-Derived Hydrocarbons. Science, 2003, 300, P. 2075–2077.

22. de Almeida R.M., Li J., Nederlof C., O’Connor P., Makkee M., Moulijn J.A. Cellulose Conversion to Isosorbide in Molten Salt hydrate Media. ChemSusChem, 2010, 3, P. 325–328.

23. Zhang Z., Wang P. Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ Sci., 2012, 5, P. 6506–6512.

24. Kim H.I., Monllor-Satoca D., Kim W., Choi W. N-doped TiO2 nanotubes coated with a thin TaOxNy layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes. Energy Environ Sci., 2015, 8, P. 247–257.

25. Denisenko A.V., Morozov A.N., Michailichenko A.I. Obtaining coating consisting of nanotubes TiO2 by anodizing the titanium in the electrolyte with an ethylene glycol with addition various amounts of water. Adv. Chem & Chem. Techn., 2015, 29 (3), P. 71–73.

26. Ghicov A., Schmuki P. Self-Ordering Electrochemistry: A Review on Growth and Functionality of TiO2 Nanotubes and Other Self-Aligned MOx Structures. Chemical Communications, 2009, 45, P. 2791–2808.

27. Robin A., de Almeida Ribeiro M.B., Rosa J.L., Nakazato R.Z., Silva M.B. Formation of TiO2 nanotube layer by anodization titanium in ethylene glycol-H2O electrolyte. J. Surf. Eng. Mater. & Adv. Techn., 2014, 41, P. 23–130.

28. Grinberg V.A., Emets V.V., Modestov A.D., Averin A.A., Shiryaev A.A. Thin-Film Nanocrystalline Zinc Oxide Photoanode Modified with CdO in Photoelectrocatalytic Degradation of Alcohols. Coatings, 2023, 13, 1080.

29. Santamaria M., Bocchetta P., Quarto F.D. Room temperature electrodeposition of photoactive Cd(OH)2 nanowires. Electrochem. Commun., 2009, 11, P. 580–584.

30. Gujar T.P., Shinde V.R., Kim W.Y., Jung K.D., Lokhande C.D., Joo O.S. Formation of CdO films from chemically deposited Cd(OH)2 films as a precursor. Appl. Surf. Sci., 2008, 254, P. 3813–3818.

31. Grinberg V.A., Emets V.V., Mayorova N.A., Averin A. A., Shiryaev A.A. Photoelectrocatalytic Activity of ZnO-Modified Hematite Films in the Reaction of Alcohol Degradation. Int. J. Mol. Sci., 2023, 24 (18), 14046.

32. Grinberg V.A., Emets V.V., Mayorova N.A., Averin A.A., Shiryaev A.A. Sn-Doped Hematite Films as Photoanodes for Photoelectrochemical Alcohol Oxidation. Catalysts, 2023, 13 (11), 1397.

33. Grinberg V.A., Emets V.V., Shapagin A.V., Averin A.A., Shiryaev A.A. Effect of the length of TiO2 nanotubes on the photoelectrochemical oxidation of phenylacetic acid anions. J. of Solid State Electrochemistry, 2024, 29 (2), P. 629–638.

34. Peter L.M., Ponomarev E.A., Fermin D.J. Intensity-modulated photocurrent spectroscopy: Reconciliation of phenomenological analysis with multistep electron transfer mechanisms. J. Electroanal. Chem., 1997, 427, P. 79–96.

35. Peter L.M., Wijayantha K.G.U., Tahir A.A. Kinetics of light-driven oxygen evolution at a-Fe2O3 electrodes. J. Faraday Discuss, 2012, 155, P. 309–322.

36. Klotz D., Ellis D.S., Dotana H., Rothschild A. Empirical in operando Analysis of the Charge Carrier Dynamics in Hematite Photoanodes by PEIS, IMPS and IMVS. J. Phys. Chem. Chem. Phys., 2016, 18, P. 23438–23457.


Supplementary files

1. Supplementary materials
Subject
Type Исследовательские инструменты
Download (839KB)    
Indexing metadata ▾

Review

For citations:


Grinberg V.A., Emets V.V., Shapagin A.V., Averin A.A., Shiryaev A.A. TiO2 nanotubes modified with cadmium oxide for photoelectrocatalytic oxidation of alcohols. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(3):352-363. https://doi.org/10.17586/2220-8054-2025-16-3-352-363

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)