Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Investigation of morphological features and thermal stability of regenerated wood cellulose from solutions in [BMIm]Cl

https://doi.org/10.17586/2220-8054-2025-16-3-364-373

Abstract

A study of the morphological features of regenerated wood pulp LS-0 obtained from its solutions in [BMIm]Cl at concentrations ranging from 2 to 26 % has been performed. It was demonstrated that at concentrations of LS-0 up to 8 % in [BMIm]Cl, thermograms exhibited a reduction in thermal stability concomitant with an increase in coke residue. In samples of regenerated cellulose obtained from solutions with an LS-0 content of 14 % or more, two maxima are observed on the differential thermogravimetric curves (DTG). This phenomenon was explained by the presence of two phases formed during the dissolution-regeneration process. The impact of [BMIm]Cl on the structural characteristics of regenerated cellulose was investigated through IR spectroscopy and X-ray diffraction analysis.

About the Authors

M. G. Mikhaleva
N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Russian Federation

Mariya G. Mikhaleva – Ph.D, senior researcher

4 Kosygina Street, Moscow, 119991



S. V. Usachev
N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Russian Federation

Sergey V. Usachev – Ph.D, senior researcher

4 Kosygina Street, Moscow, 119991



A. S. Vedenkin
N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Russian Federation

Alexander S. Vedenkin – researcher

4 Kosygina Street, Moscow, 119991



M. I. Ikim
N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Russian Federation

Mariya I. Ikim M. – Ph.D, senior researcher

4 Kosygina Street, Moscow, 119991



G. G. Politenkova
N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Russian Federation

Galina G. Politenkova – researcher

4 Kosygina Street, Moscow, 119991

+7(495)939-7225



S. M. Lomakin
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Russian Federation

Sergey M. Lomakin – Ph.D, head of laboratory

4 Kosygina Street, Moscow, 119991



References

1. Szab´o L., Milotskyi R., Sharma G., K. Takahashi. Cellulose processing in ionic liquids from a materials science perspective: turning a versatile biopolymer into the cornerstone of our sustainable future. Green Chem., 2023, 25, P. 5338-5389.

2. Gharehkhani S., Sadeghinezhad E., Kazi S.N., Yarmand H., Badarudin A., Safaei M.R., Zubir M.N.M. Basic effects of pulp refining on fiber properties – a review. Carbohydr. Polym., 2015, 115, P. 785–803.

3. Stovbun S.V., Lomakin S.M., Shchegolikhin A.I., et al. Role of Structural Stresses in the Thermodestruction of Supercoiled Cellulose Macromolecules after Nitration. Russ. J. Phys. Chem. B, 2018, 12, P. 36—45.

4. Stovbun S.V., Mikhaleva M.G., Skoblin A.A., Usachev S.V., Nikolsky S.N., Kharitonov V.A., Zlenko D.V., et al. Zhurkov’s stress-driven fracture as a driving force of the microcrystalline cellulose formation. Polymers, 2020, 12 (12), 2952.

5. Cabiac A., Guillon E., Chambon F., Pinel C., Rataboul F., Essayem N. Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Appl. Catal. A, 2011, 402, P. 1–10.

6. Heinze T. Cellulose: Structure and Properties. In: Rojas, O. (eds) Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials. Advances in Polymer Science, 2015, 271, Springer, Cham.

7. Kondo T. Hydrogen bonds in cellulose and cellulose derivatives. In: Dumitriu S. (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, 2005, P. 69–98.

8. Stovbun S.V., Nikol’skii S.N., Mel’nikov V.P., et al. Chemical physics of cellulose nitration. Russ. J. Phys. Chem. B, 2016, 10, P. 245–259.

9. Anpilova A.Y., Mastalygina E.E., Khrameeva N.P., et al. Methods for Cellulose Modification in the Development of Polymeric Composite Materials (Review). Russ. J. Phys. Chem. B, 2020, 14, P. 176–182.

10. Morris E., Pulham C.R., Morrison C.A. Structure and properties of nitrocellulose: approaching 200 years of research. RSC Adv., 2023, 13, P. 32321–32333.

11. Sayyed A.J., Deshmukh N.A., Pinjari D.V. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose, 2019, 26, P. 2913–2940.

12. Burchard W., Habermann N., Kl¨ufers P., Seger B., Wilhelm U. Cellulose in Schweizer’s Reagent: A Stable, Polymeric Metal Complex with High Chain Stiffness. Angew. Chem. Int. Ed., 1994, 33, P. 884–887.

13. Dawsey T.R., McCormick C.L. The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J. Macromol. Sci. Polymer. Rev., 1990, 30 (3-4), P. 405–440.

14. Xu A., Wang J., Wang H. Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazoliumbased ionic liquid solvent systems. Green Chem., 2010, 12, P. 268–275.

15. Heinze T., Koschella A. Solvents applied in the field of cellulose chemistry – A mini review. Pol´ımeros: Ciˆencia e Tecnologia, 2005, 15, P. 84–90.

16. Huang Y., Xin P., Li J., Shao Y., Huang C., Pan H. Room-temperature dissolution and mechanistic investigation of cellulose in a tetra- Butylammonium acetate/dimethylsulfoxide system. ACS Sustain. Chem. Eng., 2016, 4 (4), P. 2286–2294.

17. Kostag M., Jedvert K., Achtel C., Heinze T., El Seoud O.A. Recent Advances in Solvents for the Dissolution, Shaping and Derivatization of Cellulose: Quaternary Ammonium Electrolytes and their Solutions in Water and Molecular Solvents. Molecules, 2018, 23, 511.

18. El Seoud O.A., Kostag M., Jedvert K., Malek N.I. Cellulose in Ionic Liquids and Alkaline Solutions: Advances in the Mechanisms of Biopolymer Dissolution and Regeneration. Polymers, 2019, 11, 1917.

19. Olsson C., Hedlund A., Idstr¨om A., Westman G. Effect of methylimidazole on cellulose/ionic liquid solutions and regenerated material therefrom. J. Mater. Sci., 2014, 49, P. 3423–3433.

20. Graenacher C. Cellulose solution. US Patent, 1934 (p. 1934176 A). Graenacher C., Sallmann R. Cellulose solution and process of making same. US Patent, 1939 (p. 2179181 A).

21. Ghandi K. A Review of Ionic Liquids, Their Limits and Applications. Green and Sustainable Chemistry, 2014, 4 (1), P. 44–53.

22. Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D. Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc., 2002, 124 (18), P. 4974–4975.

23. Fukaya Y., Sugimoto A., Ohno H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromol., 2006, 7, P. 3295–3297.

24. Xu A., Zhang Y., LuW., Yao K., Xu H. Effect of alkyl chain length in anion on dissolution of cellulose in 1-butyl-3-methylimidazolium carboxylate ionic liquids. J. Mol. Liq., 2014, 197, P. 211–214.

25. Gupta K.M., Jiang J. Cellulose dissolution and regeneration in ionic liquids: A computational perspective. Chemical Engineering Science, 2015, 121, P. 180–189.

26. Li X.J., Sun Y.S., Zhao Q. Experimental Research on the Solubility of Cellulose in Different Ionic Liquids. Adv. Mat. Res., 2013, (690-693), P. 1568–1571.

27. Remsing R.C., Swatloski R.P., Rogers R.D., Moyna G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem. Commun. (Camb.), 2006, 12, 1271-3.

28. Endo T., Hosomi S., Fujii S., Ninomiya K., Takahashi K. Nano-Structural Investigation on Cellulose Highly Dissolved in Ionic Liquid: A Small Angle X-ray Scattering Study. Molecules, 2017, 22, 178.

29. Medronho B., Lindman B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Advances in colloid and interface science, 2015, 222, P. 502–508.

30. Usachev S.V., Zlenko D.V., Nagornova I.V., Koverzanova E.V., Mikhaleva M.G., Vedenkin A.S., Vtyurina D.N., Skoblin A.A., Nikolsky S.N., Politenkova G.G., Stovbun S.V. Structure and properties of helical fibers spun from cellulose solutions in (Bmim)Cl. Carbohydr. Polym., 2020, 235, 11586.

31. Pinkert A., Marsh K.N., Pang S., Staiger M.P. Ionic liquids and their interaction with cellulose. Chem. Rev., 2009, 109 (12), P. 6712–6728.

32. Mikhaleva M., Vedenkin A., Usachev S., Levina I. Dissolution Efficiency of Wood Pulp in Ionic Liquids Based on 1-Butyl-3-Methylimidazolium with Different Anions. Russ. J. Phys. Chem. B, 2023, 17, P. 996–1004.

33. Man Z., Muhammad N., Sarwono A., et al. Preparation of Cellulose Nanocrystals Using an Ionic Liquid. J. Polym. Environ., 2011, 19, P. 726–731.

34. ˇ Sirok´y J., Blackburn R., Bechtold T., Taylor J., White P. Attenuated total reflectance Fourier-transform infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose, 2010, 17 (1), P. 103–115.

35. Haulea L.V., Carr C.M., Rigout M. Investigation into the supramolecular properties of fibres regenerated from cotton based waste garments. Carbohydr. Polym., 2016, 144, P. 131–139.

36. Wang J., Minami E., Kawamoto H. Thermal reactivity of hemicellulose and cellulose in cedar and beech wood cell walls. J. Wood. Sci., 2020, 66, 41.

37. Rebi`ere J., Heuls M., Castignolles P., Violleau F., Durrieu V. Structural modifications of cellulose samples after dissolution into various solvent systems. Anal. Bioanal. Chem., 2016, 408, P. 8403–8414.

38. Im J., Lee S.H., Insol J., Won K.J., Kim K.S. Structural characteristics and thermal properties of regenerated cellulose, hemicellulose and lignin after being dissolved in ionic liquids. J. Indus. Engin. Chem., 2022, 107, P. 365–375.

39. Yang H., Jiang J., Zhang B., ZhangW., XiebW., Li J. Experimental study on pretreatment effects of [BMIM]HSO4/ethanol on the thermal behavior of cellulose. RSC Adv., 2022, 12, 10366.

40. Shen D.K., Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology, 2009, 100, P. 6496–6504.

41. Perova A.N., Brevnov P.N., Usachev S.V., et al. Comparative Analysis of Thermal and Physico-Mechanical Properties of Polyethylene Compositions Containing Microcrystalline and Nanofibrillary Cellulose. Russ. J. Phys. Chem. B, 2021, 15, P. 716–723.

42. Terinte N., Ibbett R., Schuster K.C. Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques. Lenzinger Berichte, 2011, 89 (1), P. 118–131.


Review

For citations:


Mikhaleva M.G., Usachev S.V., Vedenkin A.S., Ikim M.I., Politenkova G.G., Lomakin S.M. Investigation of morphological features and thermal stability of regenerated wood cellulose from solutions in [BMIm]Cl. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(3):364-373. https://doi.org/10.17586/2220-8054-2025-16-3-364-373

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)