Исследование морфологических особенностей и термической стабильности регенерированной древесной целлюлозы из ее растворов в [BMIm]Cl
https://doi.org/10.17586/2220-8054-2025-16-3-364-373
Аннотация
Проведены исследования морфологических особенностей регенерированной древесной целлюлозы ЛС-0, полученной из ее растворов в [BMIm]Cl в диапазоне концентраций от 2% до 26%. Обнаружено, что при концентрациях ЛС-0 до 8% в [BMIm]Cl на термограммах наблюдается снижение ее термической стабильности с одновременным увеличением коксового остатка. В образцах регенерированной целлюлозы, полученной из растворов с содержанием ЛС-0 14% и более, на дифференциальных термогравиметрических кривых (DTG) наблюдаются два максимума. Это явление было объяснено присутствием двух фаз, образующихся в процессе растворения-регенерации. Методами ИК-спектроскопии и рентгеноструктурного анализа показано влияние [BMIm]Cl на морфологию регенерированной целлюлозы.
Ключевые слова
Об авторах
М. Г. МихалеваРоссия
С. В. Усачев
Россия
А. С. Веденкин
Россия
М. И. Иким
Россия
Г. Г. Политенкова
Россия
С. М. Ломакин
Россия
Список литературы
1. Szab´o L., Milotskyi R., Sharma G., K. Takahashi. Cellulose processing in ionic liquids from a materials science perspective: turning a versatile biopolymer into the cornerstone of our sustainable future. Green Chem., 2023, 25, P. 5338-5389.
2. Gharehkhani S., Sadeghinezhad E., Kazi S.N., Yarmand H., Badarudin A., Safaei M.R., Zubir M.N.M. Basic effects of pulp refining on fiber properties – a review. Carbohydr. Polym., 2015, 115, P. 785–803.
3. Stovbun S.V., Lomakin S.M., Shchegolikhin A.I., et al. Role of Structural Stresses in the Thermodestruction of Supercoiled Cellulose Macromolecules after Nitration. Russ. J. Phys. Chem. B, 2018, 12, P. 36—45.
4. Stovbun S.V., Mikhaleva M.G., Skoblin A.A., Usachev S.V., Nikolsky S.N., Kharitonov V.A., Zlenko D.V., et al. Zhurkov’s stress-driven fracture as a driving force of the microcrystalline cellulose formation. Polymers, 2020, 12 (12), 2952.
5. Cabiac A., Guillon E., Chambon F., Pinel C., Rataboul F., Essayem N. Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Appl. Catal. A, 2011, 402, P. 1–10.
6. Heinze T. Cellulose: Structure and Properties. In: Rojas, O. (eds) Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials. Advances in Polymer Science, 2015, 271, Springer, Cham.
7. Kondo T. Hydrogen bonds in cellulose and cellulose derivatives. In: Dumitriu S. (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, 2005, P. 69–98.
8. Stovbun S.V., Nikol’skii S.N., Mel’nikov V.P., et al. Chemical physics of cellulose nitration. Russ. J. Phys. Chem. B, 2016, 10, P. 245–259.
9. Anpilova A.Y., Mastalygina E.E., Khrameeva N.P., et al. Methods for Cellulose Modification in the Development of Polymeric Composite Materials (Review). Russ. J. Phys. Chem. B, 2020, 14, P. 176–182.
10. Morris E., Pulham C.R., Morrison C.A. Structure and properties of nitrocellulose: approaching 200 years of research. RSC Adv., 2023, 13, P. 32321–32333.
11. Sayyed A.J., Deshmukh N.A., Pinjari D.V. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose, 2019, 26, P. 2913–2940.
12. Burchard W., Habermann N., Kl¨ufers P., Seger B., Wilhelm U. Cellulose in Schweizer’s Reagent: A Stable, Polymeric Metal Complex with High Chain Stiffness. Angew. Chem. Int. Ed., 1994, 33, P. 884–887.
13. Dawsey T.R., McCormick C.L. The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J. Macromol. Sci. Polymer. Rev., 1990, 30 (3-4), P. 405–440.
14. Xu A., Wang J., Wang H. Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazoliumbased ionic liquid solvent systems. Green Chem., 2010, 12, P. 268–275.
15. Heinze T., Koschella A. Solvents applied in the field of cellulose chemistry – A mini review. Pol´ımeros: Ciˆencia e Tecnologia, 2005, 15, P. 84–90.
16. Huang Y., Xin P., Li J., Shao Y., Huang C., Pan H. Room-temperature dissolution and mechanistic investigation of cellulose in a tetra- Butylammonium acetate/dimethylsulfoxide system. ACS Sustain. Chem. Eng., 2016, 4 (4), P. 2286–2294.
17. Kostag M., Jedvert K., Achtel C., Heinze T., El Seoud O.A. Recent Advances in Solvents for the Dissolution, Shaping and Derivatization of Cellulose: Quaternary Ammonium Electrolytes and their Solutions in Water and Molecular Solvents. Molecules, 2018, 23, 511.
18. El Seoud O.A., Kostag M., Jedvert K., Malek N.I. Cellulose in Ionic Liquids and Alkaline Solutions: Advances in the Mechanisms of Biopolymer Dissolution and Regeneration. Polymers, 2019, 11, 1917.
19. Olsson C., Hedlund A., Idstr¨om A., Westman G. Effect of methylimidazole on cellulose/ionic liquid solutions and regenerated material therefrom. J. Mater. Sci., 2014, 49, P. 3423–3433.
20. Graenacher C. Cellulose solution. US Patent, 1934 (p. 1934176 A). Graenacher C., Sallmann R. Cellulose solution and process of making same. US Patent, 1939 (p. 2179181 A).
21. Ghandi K. A Review of Ionic Liquids, Their Limits and Applications. Green and Sustainable Chemistry, 2014, 4 (1), P. 44–53.
22. Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D. Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc., 2002, 124 (18), P. 4974–4975.
23. Fukaya Y., Sugimoto A., Ohno H. Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromol., 2006, 7, P. 3295–3297.
24. Xu A., Zhang Y., LuW., Yao K., Xu H. Effect of alkyl chain length in anion on dissolution of cellulose in 1-butyl-3-methylimidazolium carboxylate ionic liquids. J. Mol. Liq., 2014, 197, P. 211–214.
25. Gupta K.M., Jiang J. Cellulose dissolution and regeneration in ionic liquids: A computational perspective. Chemical Engineering Science, 2015, 121, P. 180–189.
26. Li X.J., Sun Y.S., Zhao Q. Experimental Research on the Solubility of Cellulose in Different Ionic Liquids. Adv. Mat. Res., 2013, (690-693), P. 1568–1571.
27. Remsing R.C., Swatloski R.P., Rogers R.D., Moyna G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem. Commun. (Camb.), 2006, 12, 1271-3.
28. Endo T., Hosomi S., Fujii S., Ninomiya K., Takahashi K. Nano-Structural Investigation on Cellulose Highly Dissolved in Ionic Liquid: A Small Angle X-ray Scattering Study. Molecules, 2017, 22, 178.
29. Medronho B., Lindman B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Advances in colloid and interface science, 2015, 222, P. 502–508.
30. Usachev S.V., Zlenko D.V., Nagornova I.V., Koverzanova E.V., Mikhaleva M.G., Vedenkin A.S., Vtyurina D.N., Skoblin A.A., Nikolsky S.N., Politenkova G.G., Stovbun S.V. Structure and properties of helical fibers spun from cellulose solutions in (Bmim)Cl. Carbohydr. Polym., 2020, 235, 11586.
31. Pinkert A., Marsh K.N., Pang S., Staiger M.P. Ionic liquids and their interaction with cellulose. Chem. Rev., 2009, 109 (12), P. 6712–6728.
32. Mikhaleva M., Vedenkin A., Usachev S., Levina I. Dissolution Efficiency of Wood Pulp in Ionic Liquids Based on 1-Butyl-3-Methylimidazolium with Different Anions. Russ. J. Phys. Chem. B, 2023, 17, P. 996–1004.
33. Man Z., Muhammad N., Sarwono A., et al. Preparation of Cellulose Nanocrystals Using an Ionic Liquid. J. Polym. Environ., 2011, 19, P. 726–731.
34. ˇ Sirok´y J., Blackburn R., Bechtold T., Taylor J., White P. Attenuated total reflectance Fourier-transform infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose, 2010, 17 (1), P. 103–115.
35. Haulea L.V., Carr C.M., Rigout M. Investigation into the supramolecular properties of fibres regenerated from cotton based waste garments. Carbohydr. Polym., 2016, 144, P. 131–139.
36. Wang J., Minami E., Kawamoto H. Thermal reactivity of hemicellulose and cellulose in cedar and beech wood cell walls. J. Wood. Sci., 2020, 66, 41.
37. Rebi`ere J., Heuls M., Castignolles P., Violleau F., Durrieu V. Structural modifications of cellulose samples after dissolution into various solvent systems. Anal. Bioanal. Chem., 2016, 408, P. 8403–8414.
38. Im J., Lee S.H., Insol J., Won K.J., Kim K.S. Structural characteristics and thermal properties of regenerated cellulose, hemicellulose and lignin after being dissolved in ionic liquids. J. Indus. Engin. Chem., 2022, 107, P. 365–375.
39. Yang H., Jiang J., Zhang B., ZhangW., XiebW., Li J. Experimental study on pretreatment effects of [BMIM]HSO4/ethanol on the thermal behavior of cellulose. RSC Adv., 2022, 12, 10366.
40. Shen D.K., Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology, 2009, 100, P. 6496–6504.
41. Perova A.N., Brevnov P.N., Usachev S.V., et al. Comparative Analysis of Thermal and Physico-Mechanical Properties of Polyethylene Compositions Containing Microcrystalline and Nanofibrillary Cellulose. Russ. J. Phys. Chem. B, 2021, 15, P. 716–723.
42. Terinte N., Ibbett R., Schuster K.C. Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques. Lenzinger Berichte, 2011, 89 (1), P. 118–131.
Рецензия
Для цитирования:
Михалева М.Г., Усачев С.В., Веденкин А.С., Иким М.И., Политенкова Г.Г., Ломакин С.М. Исследование морфологических особенностей и термической стабильности регенерированной древесной целлюлозы из ее растворов в [BMIm]Cl. Наносистемы: физика, химия, математика. 2025;16(3):364-373. https://doi.org/10.17586/2220-8054-2025-16-3-364-373
For citation:
Mikhaleva M.G., Usachev S.V., Vedenkin A.S., Ikim M.I., Politenkova G.G., Lomakin S.M. Investigation of morphological features and thermal stability of regenerated wood cellulose from solutions in [BMIm]Cl. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(3):364-373. https://doi.org/10.17586/2220-8054-2025-16-3-364-373