Boron doped small fullerenes C20, C24, C28 as a basis for the formation of heterostructures
https://doi.org/10.17586/2220-8054-2025-16-3-374-385
Abstract
In this paper, the stability, geometric and electronic properties of boron doped small fullerenes C20, C24, C28 were investigated using density functional theory (DFT) methods. Average bonds lengths were calculated and the stability of optimized structures was estimated. An analysis of one-electron spectra and the density of states (DOS) allowed us to define the mechanisms for the change in the band gap and to determine the dependence of this parameter on the concentration of boron atoms. The established dependence of the band gap on the concentration of impurity atoms suggests the possibility of controlling the refractive index of the considered nanomaterials by doping with different concentrations of boron atoms, which indicates the applicability of such an approach to the construction of heterostructures in general and photonic crystals in particular. The obtained results can be useful for the fabrication of the novel optoelectronic devices which are used in infocommunication systems for the manipulating and transformation of optical signals.
About the Authors
A. R. El ZaninRussian Federation
Anton R. El Zanin
Universitetskiy av., 100, Volgograd, 400062
S. V. Boroznin
Russian Federation
Sergey V. Boroznin
Universitetskiy av., 100, Volgograd, 400062
I. V. Zaporotskova
Russian Federation
Irina V. Zaporotskova
Universitetskiy av., 100, Volgograd, 400062
References
1. Essiambre R.J., Tkach R.W. Capacity trends and limits of optical communication networks. Proceedings of the IEEE, 2012, 100 (5), P. 1035–1055.
2. El-Hageen H.M., Alatwi A.M., Zaki Rashed A.N. High-speed signal processing and wide band optical semiconductor amplifier in the optical communication systems. J. of Optical Communications, 2024, 44 (sl), s1277–s1284.
3. Soma D., Beppu S., Wakayama Y., Sumita S., Takahashi H., Yoshikane N., Morita I., Fellow, Tsuritani T., Suzuki M. 50.47-Tbit/s standard cladding coupled 4-core fiber transmission over 9,150 km. J. of Lightwave Technology, 2021, 39 (22), P. 7099–7105.
4. Manral A., Singh R. Lifi technology. Int. J. of Scientific Research in Science, Engineering and Technology, 2016, 2, P. 493–498.
5. Khaleel B.M., Alatba S.R., Hamdoun S.H., Terenchuk S. Exploring Li-Fi for IoT Advanced Audio Data Transfer. Proceedings of the Conference “35th Conference of Open Innovations Association (FRUCT)”, Tampere, Finland, 9 May 2024, P. 343–351.
6. Alfattani S. Review of LiFi technology and its future applications. J. of Optical Communications, 2021, 42 (1), P. 121–132.
7. Oton E., Cigl M., Morawiak P., Mironov S., Bubnov A., Piecek W. All-optical 3D blue phase photonic crystal switch with photosensitive dopants. Scientific Reports, 2024, 14 (1), 9910.
8. Masilamani S., Samundiswary P. Compact and efficient PC-based directional coupler all-optical switch. J. of Optical Communications, 2024, 44 (s1), s153–s160.
9. Kumar V., Suthar B. Unit cell independent optical filter using one-dimensional photonic crystal. J. of Optics, 2024, 53, P. 5106–5109.
10. Banerjee A. Design of an optical buffer by using 1D quaternary photonic crystal. J. of Optics, 2024, 53 (2), P. 817–820.
11. Zhang A., Yang X., Wang J. Design of Channel Drop Filters Based on Photonic Crystal with a Dielectric Column with Large Radius inside Ring Resonator. Photonics, 2024, 11 (6), 554.
12. Liu M.D., Chen H.H., Wang Z., Zhang Y., Zhou X., Tang G.J., Ma F., He X.T., Chen X.D., Dong J.W. On-Chip Topological Photonic Crystal Nanobeam Filters. Nano Letters, 2024, 24 (5), P. 1635–1641.
13. Wang Y., Yao Y., Zhang H., Liu B., Duan S., Lin W. An electrically controlled tunable photonic crystal filter based on thin-film lithium niobate. Optoelectronics Letters, 2024, 20 (4), P. 200–204.
14. Ankita, Suthar B., Bissa S., Bhargava A. Dual-channel optical filter based on photonic crystal with double defect. J. of Optics, 2024, 53, P. 3996– 3999.
15. Hazra S., Mukhopadhyay S. Photonic crystal based integrated system for half adder and half subtractor operations. Optical and Quantum Electronics, 2024, 56 (5), 855.
16. Pathak P., Zafar R., Kanungo V., Vyas S. Photonic crystal-based all-optical half adder with high contrast ratio. J. of Optical Communications, 2024, 44 (s1), s119–s124.
17. Hazra S., Mukhopadhyay S. Implementation of photonic crystal based optical full adder using ring resonators. Optics Communications, 2024, 130828.
18. Goswami K., Mondal H., Sen M. Design of all optical logic half adder based on holes-in-slab photonic crystal. Optical and Quantum Electronics, 2024, 56 (2), 271.
19. Askarian A. All optical half subtractor based on linear photonic crystals and phase shift keying technique. J. of Optical Communications, 2024, 44 (s1), s449–s455.
20. Chen H., Chen H., Li A., Liu M., Chan E.H.W. Simple and reconfigurable photonics-based half adder and half subtracter. Optics Communications, 2024, 555, 130206.
21. Elhachemi K., Rafah N. A novel proposal based on 2D linear resonant cavity photonic crystals for all-optical NOT, XOR and XNOR logic gates. J. of Optical Communications, 2024, 44 (s1), s283–s291.
22. He L., Liu D., Zhang H., Zhang F., Zhang W., Feng X., Huang Y., Cui K., Liu F., Zhang W., Zhang X. Topologically Protected Quantum Logic Gates with Valley-Hall Photonic Crystals. Advanced Materials, 2024, 36 (24), 2311611.
23. Mitin V.V., Kochelap V.A., Stroscio M.A. Quantum heterostructures: microelectronics and optoelectronics. Cambridge: University Press, Cambridge, 1999, 642 p.
24. Yablonovitch E. Photonic band-gap structures. JOSA B, 1993, 10 (2), P. 283–295.
25. Yang Y., Wang L., Yang H., Li Q. 3D chiral photonic nanostructures based on blue-phase liquid crystals. Small Science, 2021, 1 (6), 2100007.
26. Vlasov Y.A., O’Boyle M., Hamann H.F., McNab S.J. Active control of slow light on a chip with photonic crystal waveguides. Nature, 2005, 438 (7064), P. 65–69.
27. Gersen H., Karle T.J., Engelen R.J.P., Bogaerts W., Korterik J.P., van Hulst N.F., Krauss T.F., Kuipers L. Real-space observation of ultraslow light in photonic crystal waveguides. Physical Review Letters, 2005, 94 (7), 073903.
28. Kempa K., Kimball B., Rybczynski J., Huang Z.P., Wu P.F., Steeves D., Sennett M., Giersig M., Rao D.V.G.L.N., Carnahan D.L., Wang D.Z., Lao J.Y., Li W.Z., Ren Z.F. Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Letters, 2003, 3 (1), P. 13–18.
29. Cui K., Lemaire P., Zhao H., Savas T., Parsons G., Hart A.J. Tungsten–carbon nanotube composite photonic crystals as thermally stable spectralselective absorbers and emitters for thermophotovoltaics. Advanced Energy Materials, 2018, 8 (27), 1801471.
30. Sun X., Zhang J., Lu X., Fang X., Peng H. Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes. Angewandte Chemie Int. Ed., 2015, 54 (12), P. 3630–3634.
31. Tan Y.C., Tou Z.Q., Mamidala V., Chow K.K., Chan C.C. Continuous refractive index sensing based on carbon-nanotube-deposited photonic crystal fibers. Sensors and Actuators B: Chemical, 2014, 202, P. 1097–1102.
32. Butt H., Dai Q., Wilkinson T.D., Amaratunga G.A.J. Negative index photonic crystal lenses based on carbon nanotube arrays. Photonics and Nanostructures – Fundamentals and Applications, 2012, 10 (4), P. 499–505.
33. Mahmoodi Y., Fathi D. High-performance refractive index sensor for oil derivatives based on MWCNT photonic crystal microcavity. Optics & Laser Technology, 2021, 138, 106865.
34. Solookinejad G., Payravi M., Jabbari M., Nafar M., Sangachin E.A. Optical multistability in 1D photonic crystal doped with carbon-nanotube quantum dot nanostructures. Laser Physics, 2017, 27 (12), 125202.
35. Fernandes J.A., Feitosa F.A.O., Costa C.H.O., Vasconcelos M.S., Bezerra C.G., Anselmo D.H.A.L. Graphene-embedded planar and cylindrical Oldenburger–Kolakoski aperiodic photonic crystals. Optical Materials, 2024, 148, 114832.
36. Hossain M.M., Talukder M.A. Tamm and surface plasmon hybrid modes in anisotropic graphene-photonic-crystal structure for hemoglobin detection. Optics Express, 2024, 32 (8), P. 14261–14275.
37. Xia B., Zeng X., Lan W., Zhang M., Huang W., Wang H., Liu C. Cellulose nanocrystal/graphene oxide one-dimensional photonic crystal film with excellent UV-blocking and transparency. Carbohydrate Polymers, 2024, 327, 121646.
38. Kumar C., Raghuwanshi S.K., Kumar V. Graphene-based patch antenna array on photonic crystal substrate at terahertz frequency band. J. of Electromagnetic Waves and Applications, 2024, 38 (2), P. 250–263.
39. Liu W., Li G., Chen C., Liu J., Li Z.Y. Broadly tunable filter based on a graphene MEMS-photonic crystal composite structure and its application in single-pixel full-color displays. J. of Materials Chemistry C, 2024, 12 (18), P. 6588–6595.
40. Elblbeisi M., Taya S.A., Almawgani A.H., Hindi A.T., Alhamss D.N., Colak I., Patel S.K. Absorption Properties of a Defective Binary Photonic Crystal Consisting of a Metamaterial, SiO2, and Two Graphene Sheets. Plasmonics, 2024, 19 (3), P. 1431–1442.
41. Zhang C., Ota Y., Iwamoto S.Wide-mode-area slow light waveguides in valley photonic crystal heterostructures. Optical Materials Express, 2024, 14 (7), P. 1756–1766.
42. Kislyakov I.M., Ivanov P.V., Nunzi J.M., Vlasov A.Y., Ryzhov A.A., Venediktova A.V., Wang H., Wang Z., Zhang T., Dong N., Wanget J. Nonlinear optical fullerene and graphene-based polymeric 1D photonic crystals: perspectives for slow and fast optical bistability. JOSA B, 2021, 38 (9), C198–C209.
43. Gaevski M.E., Kognovitskii S.O., Konnikov S.G., Nashchekin A.V., Nesterov S.I., Seisyan R.P., Zadiranov J.M. Two-dimensional photonic crystal fabrication using fullerene films. Nanotechnology, 2000, 11 (4), 270.
44. Xu B., Han P., Wang L., Li J., Liu X., Chen M., Hideki I. Optical properties in 2D photonic crystal structure using fullerene and azafullerene thin films. Optics communications, 2005, 250 (1–3), P. 120–125.
45. Srivastava S., Ojha S. Omnidirectional reflection bands in one-dimensional photonic crystal structure using fullerene films. Progress In Electromagnetics Research, 2007, 74, P. 181–194.
46. Belousova I.M., Ryzhov A.A. Numerical simulation of nonlinear properties of fullerene-containing one-dimensional photonic crystal. Optics and Spectroscopy, 2012, 112, P. 902–905.
47. Sawant S.V., Patwardhan A.W., Joshi J.B., Dasgupta K. Boron doped carbon nanotubes: Synthesis, characterization and emerging applications – A review. Chemical Engineering J., 2022, 427, 131616.
48. Zhang J.J., Ma J., Feng X. Precision Synthesis of Boron-Doped Graphene Nanoribbons: Recent Progress and Perspectives. Macromolecular Chemistry and Physics, 2023, 224 (1), 2200232.
49. Zaporotskova I.V., Boroznin S.V., Belonenko M.B., Drychkov E.S., Butenko Y.V. Graphene Nanotapes Modified with Impurity Boron Atoms as a Basis for Two-Dimensional Photonic Crystals. Bulletin of The Russian Academy of Sciences: Physics, 2022, 86, P. 1450–1453.
50. Zaporotskova I.V., Boroznina N.P., Boroznin S.V., Drychkov E.S., Butenko Y.V., Belonenko M.B. Carbon Nanotubes Doped with Boron as a Basis for Two-Dimensional Photonic Crystals. Bulletin of The Russian Academy of Sciences: Physics, 2022, 86, P. 673–677.
51. Boroznin S.V., Carbon nanolayers modified with boron atoms as a basis for devices with ionic conductivity: theoretical study. J. of Advanced Materials and Technologies, 2022, 7 (2), P. 97–103.
52. Fuentes G.G., Borowiak-Palen E., Knupfer M., Pichler T., Fink J., Wirtz L., Rubio A. Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes. Physical Review B—Condensed Matter and Materials Physics, 2004, 69 (24), 245403.
53. Yang N., Liu G., Chen T., Dong X., Li Y., Xu Z. Unveiling adsorption characteristics of BC5 monolayer: High electronic anisotropy and gas sensing performance. Applied Surface Science, 2023, 615, 156226.
54. Chuvilin A., Kaiser U., Bichoutskaia E., Besley N.A., Khlobystov A.N. Direct transformation of graphene to fullerene. Nature Chemistry, 2010, 2 (6), P. 450–453.
55. Koch W., Holthausen M., A Chemist’s Guide to Density Functional Theory, Wiley-VCH, Weinheim, 2002, 306 p.
56. Sakr M.A., Abdelsalam H., Teleb N.H., Abd-Elkader O.H., Zhang Q. Exploring the structural, electronic, and hydrogen storage properties of hexagonal boron nitride and carbon nanotubes: insights from single-walled to doped double-walled configurations. Scientific Reports, 2024, 14 (1), 4970.
57. Tomilin O.B., Rodionova E.V., Rodin E.A., Knyazev A.V. Emission properties of boron and nitrogen doped ultrashort carbon nanotubes. Applied Surface Science, 2024, 669, 160443.
58. Pei S., Li J., Bai Z.,Wang C., Lv X. Atomic insights of structural, electronic properties of B, N, P, S, Si-doped fullerenes and lithium ion migration with DFT-D method. J. of Molecular Modeling, 2024, 30 (12), 422.
59. Kurban M. Electronic structure, optical and structural properties of Si, Ni, B and N-doped a carbon nanotube: DFT study. Optik, 2018, 172, P. 295–301.
60. O’boyle N.M., Tenderholt A.L., Langner K.M. Cclib: a library for package-independent computational chemistry algorithms. J. of Computational Chemistry, 2008, 29 (5), P. 839–845.
61. North S.C., Jorgensen K.R., Pricetolstoy J., Wilson A.K. Population analysis and the effects of Gaussian basis set quality and quantum mechanical approach: main group through heavy element species. Frontiers in Chemistry, 2023, 11, 1152500.
Review
For citations:
El Zanin A.R., Boroznin S.V., Zaporotskova I.V. Boron doped small fullerenes C20, C24, C28 as a basis for the formation of heterostructures. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(3):374-385. https://doi.org/10.17586/2220-8054-2025-16-3-374-385