Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis of PbFe2.4X2.4Y2.4Ga2.4In2.4O19 high-entropy oxides with the magnetoplumbite structure

https://doi.org/10.17586/2220-8054-2023-14-3-354-362

Abstract

The purpose of this study is to obtain high-entropy oxides with the magnetoplumbite structure, in which the Pb cation is used as a divalent metal cation. The synthesis conditions were optimized, and a technique was developed to avoid the evaporation of lead oxide. For the first time, single-phase samples of high-entropy oxides with the magnetoplumbite structure were obtained, its chemical composition is reflected by the formula PbFe2.4X2.4Y2.4Ga2.4In2.4O19. The particle size of the high-entropy phase is about 100 nm, which makes it promising for a number of applications. The effect of preliminary grinding of the initial components on the results of synthesis was studied. A synthesis mechanism is proposed. The results pave the way to synthesis and study of the properties of a new large subgroup of high-entropy oxides with the magnetoplumbite structure, which expands the possibilities of controlling the properties of ceramic magnetic materials.

About the Authors

O. V. Zaitseva
South Ural State University
Russian Federation

Olga V. Zaitseva

Lenin Av., 76, Chelyabinsk, 454080



E. A. Trofimov
South Ural State University
Russian Federation

Evgeny A. Trofimov

Lenin Av., 76, Chelyabinsk, 454080



V. E. Zhivulin
South Ural State University
Russian Federation

Vladimir E. Zhivulin

Lenin Av., 76, Chelyabinsk, 454080



A. Ostovari Mogaddam
South Ural State University
Russian Federation

Ahmad Ostovari Mogaddam

Lenin Av., 76, Chelyabinsk, 454080



O. V. Samoilova
South Ural State University
Russian Federation

Olga V. Samoilova

Lenin Av., 76, Chelyabinsk, 454080



K. S. Litvinyuk
South Ural State University
Russian Federation

Ksenia S. Litvinyuk

Lenin Av., 76, Chelyabinsk, 454080



A. R. Zykova
South Ural State University
Russian Federation

Alena R. Zykova

Lenin Av., 76, Chelyabinsk, 454080



D. V. Mikhailov
South Ural State University
Russian Federation

Dmitry V. Mikhailov

Lenin Av., 76, Chelyabinsk, 454080



S. A. Gudkova
South Ural State University
Russian Federation

Svetlana A. Gudkova

Lenin Av., 76, Chelyabinsk, 454080



D. A. Vinnik
South Ural State University
Russian Federation

Denis A. Vinnik

Lenin Av., 76, Chelyabinsk, 454080



References

1. Wang C., Ma X., Xu C., Chen H., Chen Y., Chen F., Kang B., Lu W., Zhang J., Cao S. Magnetic field-induced polarization reversal in Y-type hexaferrites single crystals. Ceram. Int., 2021, 47, P. 19356–19361.

2. Huang K., Yu J., Zhang L., Xu J., Yang Z., Liu C., Wang W., Kan X. Structural and magnetic properties of Gd–Zn substituted M-type Ba–Sr hexaferrites by sol-gel auto-combustion method. J. Alloys Compd., 2019, 803, P. 971–980.

3. Zhang W., Li J., Yi S., Zu P., Wu J., Lin J., Li M., Su W. Influence of La–Nb co-substituted Sr ferrite on microstructure, spectrum and magnetic properties of hexaferrites. J. Alloys Compd., 2021, 871, 159563.

4. Almessiere M.A., Slimani Y., Algarou N.A., Gondal M.A., Wudil Y.S., Younas M., Auwal I.A., Baykal A., Manikandan A., Zubar T.I., Kostishin V.G., Trukhanov A.V., Ercan I. Electronic, magnetic, and microwave properties of hard/soft nanocomposites based on hexaferrite SrNi0:02Zr0:02Fe11:96O19 with variable spinel phase MFe2O4 (M=Mn, Co, Cu and Zn). Ceram. Int., 2021, 47, P. 35209–35223.

5. Darwish M.A., Turchenko V.A., Morchenko A.T., Kostishyn V.G., Timofeev A.V., Sayyed M.I., Sun Z., Podgornaya S.V., Trukhanova E.L., Kaniukov E.Y., Trukhanov S.V., Trukhanov A.V. Heterovalent substituted BaFe12-xSnxO19 (0:1 ≤ x ≤ 1:2) M-type hexaferrite: Chemical composition, phase separation, magnetic properties and electrodynamics features. J. Alloys Compd., 2022, 896, 163117.

6. Shams M.H., Salehi S.M.A., Ghasemi A. Electromagnetic wave absorption characteristics of Mg–Ti substituted Ba-hexaferrite. Mater. Lett., 2008, 62 (10–11), P. 1731–1733.

7. Millimetre wave and terahertz sensors and technology XIII. Salmon N.A., Gumbmann F. (ed.) Proc. SPIE – Int. Soc. Opt. Eng., 2020, 11541, 121 p.

8. Bhaduri A., Singh S., Thapa K.B., Yadav B.C. Visible light-induced, highly responsive, below lower explosive limit (LEL) LPG sensor based on hydrothermally synthesized barium hexaferrite nanorods. Sensors Actuators B Chem., 2021, 348, 130714.

9. Rajaji U., Chinnapaiyan S., Chen T.-W., Chen S.-M., Mani G., Mani V., Ali M.A., Al-Hemaid F.M.A., El-Shikh M.S. Rational construction of novel strontium hexaferrite decorated graphitic carbon nitrides for highly sensitive detection of neurotoxic organophosphate pesticide in fruits. Electrochim. Acta, 2021, 371, 137756.

10. Rai G.M., Iqbal M.A., Kubra K.T. Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 hexaferrites. J. Alloys Compd., 2010, 495, P. 229–233.

11. Jacobo S.E., Hermea C., Bercoff P.G. Influence of the iron content on the formation process of substituted Co–Nd strontium hexaferrite prepared by the citrate precursor method. J. Alloys Compd., 2010, 495, P. 513–515.

12. Thakur A., Singh R.R., Barman P.B. Structural and magnetic properties of La3+ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method. J. Magn. Magn. Mater., 2012, 326, P. 35–40.

13. Kostishyn V.G., Panina L.V., Timofeev A.V., Kozhitov L.V., Kovalev A.N., Zyuzin A.K. Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19. J. Magn. Magn. Mater., 2016, 400, P. 327–332.

14. Pullar R.C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci., 2012, 57 (7), P. 1191–1334.

15. Gorbachev E.A., Trusov L.A., Wu M., Vasiliev A.V., Svetogorov R.D., Alyabyeva L.N., Lebedev V.A., Sleptsova A.E., Karpov M.A., Mozharov Y.M., Gorshunov B.P., Kazin P.E. Submicron particles of Ga-substituted strontium hexaferrite obtained by a citrate auto-combustion method. J. Mater. Chem. C, 2021, 9, P. 13832–13840.

16. Choi J.-Y., Baek Y.-K., Lee J.-G., Kim Y.-K. Effect of sodium addition on structural and magnetic properties of solid state processed SrFe12-xAlxO19 (x ≤ 4). Appl. Phys. A: Mater. Sci. and Proces., 2022, 128 (12).

17. Wu C., Liu Q., Yin Q., Chen J., Zhang H., Liu Y. Room-temperature multiferroic properties of Al-doped hexaferrites sintered at high oxygen atmospheric concentrations. Ceram. Int., 2021, 47 (15), P. 21398–21403.

18. Sözeri H., Genc¸ F., Almessiere M.A., U¨ nver I˙.S., Korkmaz A.D., Baykal A. CR3+-substituted Ba nanohexaferrites as high-quality microwave absorber in X band. J. Alloys Compd., 2019, 779, P. 420–426.

19. Turchenko V., Kostishin V.G., Trukhanov S., Damay F., Balasoiu M., Bozzo B., Fina I., Burkhovetsky V.V., Polosan S., Zdorovets M.V., Kozlovskiy A.L., Astapovich K.A., Trukhanov A. Structural features, magnetic and ferroelectric properties of SrFe10:8In1:2O19 compound. Mater. Res. Bull., 2021, 138, 111236.

20. Huang, K., Yu, J., Zhang, L., Xu, J., Li, P., Yang, Z., Kan, X. Synthesis and characterizations of magnesium and titanium doped M-type barium calcium hexaferrites by a solid state reaction method. J. Alloys Comp., 2020, 825, 154072.

21. Vinnik D. A., Gudkova S.A., Zhivulin V.E., Trofimov E.A. Ferrite-based solid solutions: Structure types, preparation, properties, and potential applications. Inorg. Mater., 2021, 57 (11), P. 1109–1118.

22. Zhilina E.M., Russkikh A.S., Krasikov S.A., Osinkina T.V., Rempel A.A. Synthesis of High-Entropy Alloy AlTiZrVNb by Aluminothermic Reaction. Inorg. Chem., 2022, 67 (6), P. 825–828.

23. Teplonogova M.A, Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. High-entropy layered rare earth hydroxides. Inorg. Chem., 2022, 61 (49), P. 19817–9827.

24. Wang B., Yao J., Wang J., Chang A. Spinel-type high-entropy (Co0:2Mn0:2Fe0:2Zn0:2Ti0:2)3O4 oxides constructed from disordered cations and oxygen vacancies. J. Alloys Compd., 2022, 897, 163188.

25. Vinnik D.A., Zhivulin V.E., Trofimov E.A., Gudkova S.A., Punda A.Y., Valiulina A.N., Gavrilyak M., Zaitseva O.V., Taskaev S.V., Khandaker M.U., Alqahtani A., Bradley D.A., Sayyed M.I., Turchenko V.A., Trukhanov A.V., Trukhanov S.V. A-site cation size effect on structure and magnetic properties of Sm(Eu,Gd)Cr0:2Mn0:2Fe0:2Co0:2Ni0:2O3 high-entropy solid solutions. Nanomaterials, 2022, 12 (1), 36.

26. Dabrowa J., Cie´slak J., Zajusz M., Mo´zdzierz M., Berent K., Mikula A., Stepie´n A., ´Swierczek K. Structure and transport properties of the novel (Dy,Er,Gd,Ho,Y)3Fe5O12 and (Dy,Er,Gd,Ho,Y)3Fe5O12 high entropy garnets. J. Eur. Ceram. Soc., 2021, 41, P. 3844–3849.

27. Vinnik D.A., Trofimov E.A., Zhivulin V.E., Zaitseva O.V., Gudkova, S.A., Starikov A.Y., Zherebtsov D.A., Kirsanova A.A., H¨assner M., Niewa R. High-entropy oxide phases with magnetoplumbite structure. Ceram. Int., 2019, 45 (10), P. 12942–12948.

28. Vinnik D.A., Trofimov E.A., Zhivulin V.E., Zaitseva O.V., Zherebtsov D.A., Starikov A.Y., Sherstyuk D.P., Gudkova S.A., Taskaev S.V. The new extremely substituted high entropy (Ba,Sr,Ca,La)Fe6-x(Al,Ti,Cr,In,Cu,W)xO19 microcrystals with magnetoplumbite structure. Ceram. Int., 2020, 46 (7), P. 9656–9660.

29. Vinnik D.A., Zhivulin V.E., Trofimov E.A., Starikov A.Y., Zherebtsov D.A., Zaitseva O.V., Gudkova S.A., Taskaev S.V., Klygach D.S., Vakhitov M.G., Sander E.E., Sherstyuk D.P. Trukhanov A.V. Extremely polysubstituted magnetic material based on magnetoplumbite with a hexagonal structure: Synthesis, structure, properties, prospects. Nanomater., 2019, 9 (4).

30. Trukhanov A.V., Vinnik D.A., Trofimov E.A., Zhivulin V.E., Zaitseva O.V., Taskaev S.V., Zhou D., Astapovich K.A., Trukhanov S.V., Yang Y. Correlation of the Fe content and entropy state in multiple substituted hexagonal ferrites with magnetoplumbite structure. Ceram. Int., 2021, 47, P. 17684–17692.

31. Zhivulin V.E., Trofimov E.A., Zaitseva O.V., Sherstyuk D.P., Cherkasova N.A, Taskaev S.V., Vinnik D.A., AlekhinaYu.A., Perov N.S., Tishkevich D.I., Zubar T.I., Trukhanov A.V., Trukhanov S.V. Effect of configurational entropy on phase formation, structure, and magnetic properties of deeply substituted strontium hexaferrites. Ceram. Int., 2023, 49 (1), P. 1069–1084.

32. Obradors X., Solans X., Collomb A., Samaras D., Rodriguez J., Pernet M., Font-Altaba M. Crystal structure of strontium hexaferrite SrFe12O19. J. Sol. St. Chem., 1988, 72 (2), P. 218–224.

33. Vinnik D.A., Trofimov E.A., Zherebtsov D.A. Experimental Study and Thermodynamic Modeling of Phase Equilibria in PbO–Fe2O3 System. In Materials Science Forum Trans Tech Publications, Ltd., 2016, 870, P. 282–285.

34. Nevˇriva M., Fischer K. Contribution to the binary phase diagram of the system PbO–Fe2O3. Mater. Res. Bull., 1986, 21, P. 1285–1290.

35. Jonker H.D. Investigation of the phase diagram of the system PbO–B2O3–Fe2O3–Y2O3 for the growth of single crystals of Y3Fe5O12. J. Cryst. Growth., 1975, 28, P. 231–239.

36. Mountvala A.J., Ravitz S.F. Phase Relations and Structures in the System PbO–Fe2O3. J. Am. Ceram. Soc., 1962, 45, P. 285–288.

37. Diop I., David N., Fiorani J.M., Podor R., Vilasi M. Experimental investigations and thermodynamic description of the PbO–Fe2O3 system. Thermochimica Acta, 2010, 510, P. 202–212.

38. Aleshko-Ozhevskii O.P., Faek M.K., Yamzin I.I. A neutron diffraction study of the structure of magnetoplumbite. Soviet Physics – Crystallography, 1969, 14, P. 367–369.

39. Obradors X., Collomb A., Pernet M., Samaras D., Joubert J.C. X-ray analysis of the structural and dynamic properties of BaFe12O19 hexagonal ferrite at room temperature. J. Solid State Chem., 1985, 56 (2), P. 171–181.

40. Bouvaist J., Weigel D. Sesquioxyde de plomb, Pb2O3. I. Determination de la structure. Acta Crystallogr. A, 1970, 26, P. 501–510.


Review

For citations:


Zaitseva O.V., Trofimov E.A., Zhivulin V.E., Ostovari Mogaddam A., Samoilova O.V., Litvinyuk K.S., Zykova A.R., Mikhailov D.V., Gudkova S.A., Vinnik D.A. Synthesis of PbFe2.4X2.4Y2.4Ga2.4In2.4O19 high-entropy oxides with the magnetoplumbite structure. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(3):354-362. https://doi.org/10.17586/2220-8054-2023-14-3-354-362

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)