Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Синтез высокоэнтропийных оксидов PbFe2.4X2.4Y2.4Ga2.4In2.4O19 со структурой магнетоплюмбита

https://doi.org/10.17586/2220-8054-2023-14-3-354-362

Аннотация

Цель данного исследования – получение образцов высокоэнтропийных оксидов со структурой магнетоплюмбита, в которых в качестве катиона двухвалентного металла используется катион Pb. Разработана методика, позволяющая избежать существенного испарения оксида свинца в процессе синтеза. Впервые получены практически однофазные образцы высокоэнтропийных оксидов со структурой магнетоплюмбита, состав которых отражает формула PbFe2.4X2.4Y2.4Ga2.4In2.4O19. Размер частиц в некоторых случаях составляет порядка 100 нм, что делает их перспективными для ряда приложений. Изучено влияние предварительного перемалывания исходных компонентов на результаты синтеза. Предложен механизм синтеза. Полученные результаты открывают путь к синтезу и исследованию свойств новой большой подгруппы высокоэнтропийных оксидов со структурой магнетоплюмбита, что расширяет возможности управления свойствами керамических магнитных материалов.

Об авторах

О. В. Зайцева
South Ural State University
Россия

Ольга Владимировна Зайцева



Е. А. Трофимов
South Ural State University
Россия

Евгений Алексеевич Трофимов



В. Е. Живулин
South Ural State University
Россия

Владимир Евгеньевич Живулин



A. Остовари Могаддам
South Ural State University
Россия

Aхмад Остовари Могаддам



О. В. Самойлова
South Ural State University
Россия

Ольга Владимировна Самойлова



К. С. Литвинюк
South Ural State University
Россия

Ксения Сергеевна Литвинюк



А. Р. Зыкова
South Ural State University
Россия

Алёна Романовна Зыкова



Д. В. Михайлов
South Ural State University
Россия

Дмитрий Вячеславович Михайлов



С. А. Гудкова
South Ural State University
Россия

Светлана Александровна  Гудкова



Д. А. Винник
South Ural State University
Россия

Денис Александрович Винник



Список литературы

1. Wang C., Ma X., Xu C., Chen H., Chen Y., Chen F., Kang B., Lu W., Zhang J., Cao S. Magnetic field-induced polarization reversal in Y-type hexaferrites single crystals. Ceram. Int., 2021, 47, P. 19356–19361.

2. Huang K., Yu J., Zhang L., Xu J., Yang Z., Liu C., Wang W., Kan X. Structural and magnetic properties of Gd–Zn substituted M-type Ba–Sr hexaferrites by sol-gel auto-combustion method. J. Alloys Compd., 2019, 803, P. 971–980.

3. Zhang W., Li J., Yi S., Zu P., Wu J., Lin J., Li M., Su W. Influence of La–Nb co-substituted Sr ferrite on microstructure, spectrum and magnetic properties of hexaferrites. J. Alloys Compd., 2021, 871, 159563.

4. Almessiere M.A., Slimani Y., Algarou N.A., Gondal M.A., Wudil Y.S., Younas M., Auwal I.A., Baykal A., Manikandan A., Zubar T.I., Kostishin V.G., Trukhanov A.V., Ercan I. Electronic, magnetic, and microwave properties of hard/soft nanocomposites based on hexaferrite SrNi0:02Zr0:02Fe11:96O19 with variable spinel phase MFe2O4 (M=Mn, Co, Cu and Zn). Ceram. Int., 2021, 47, P. 35209–35223.

5. Darwish M.A., Turchenko V.A., Morchenko A.T., Kostishyn V.G., Timofeev A.V., Sayyed M.I., Sun Z., Podgornaya S.V., Trukhanova E.L., Kaniukov E.Y., Trukhanov S.V., Trukhanov A.V. Heterovalent substituted BaFe12-xSnxO19 (0:1 ≤ x ≤ 1:2) M-type hexaferrite: Chemical composition, phase separation, magnetic properties and electrodynamics features. J. Alloys Compd., 2022, 896, 163117.

6. Shams M.H., Salehi S.M.A., Ghasemi A. Electromagnetic wave absorption characteristics of Mg–Ti substituted Ba-hexaferrite. Mater. Lett., 2008, 62 (10–11), P. 1731–1733.

7. Millimetre wave and terahertz sensors and technology XIII. Salmon N.A., Gumbmann F. (ed.) Proc. SPIE – Int. Soc. Opt. Eng., 2020, 11541, 121 p.

8. Bhaduri A., Singh S., Thapa K.B., Yadav B.C. Visible light-induced, highly responsive, below lower explosive limit (LEL) LPG sensor based on hydrothermally synthesized barium hexaferrite nanorods. Sensors Actuators B Chem., 2021, 348, 130714.

9. Rajaji U., Chinnapaiyan S., Chen T.-W., Chen S.-M., Mani G., Mani V., Ali M.A., Al-Hemaid F.M.A., El-Shikh M.S. Rational construction of novel strontium hexaferrite decorated graphitic carbon nitrides for highly sensitive detection of neurotoxic organophosphate pesticide in fruits. Electrochim. Acta, 2021, 371, 137756.

10. Rai G.M., Iqbal M.A., Kubra K.T. Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 hexaferrites. J. Alloys Compd., 2010, 495, P. 229–233.

11. Jacobo S.E., Hermea C., Bercoff P.G. Influence of the iron content on the formation process of substituted Co–Nd strontium hexaferrite prepared by the citrate precursor method. J. Alloys Compd., 2010, 495, P. 513–515.

12. Thakur A., Singh R.R., Barman P.B. Structural and magnetic properties of La3+ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method. J. Magn. Magn. Mater., 2012, 326, P. 35–40.

13. Kostishyn V.G., Panina L.V., Timofeev A.V., Kozhitov L.V., Kovalev A.N., Zyuzin A.K. Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19. J. Magn. Magn. Mater., 2016, 400, P. 327–332.

14. Pullar R.C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci., 2012, 57 (7), P. 1191–1334.

15. Gorbachev E.A., Trusov L.A., Wu M., Vasiliev A.V., Svetogorov R.D., Alyabyeva L.N., Lebedev V.A., Sleptsova A.E., Karpov M.A., Mozharov Y.M., Gorshunov B.P., Kazin P.E. Submicron particles of Ga-substituted strontium hexaferrite obtained by a citrate auto-combustion method. J. Mater. Chem. C, 2021, 9, P. 13832–13840.

16. Choi J.-Y., Baek Y.-K., Lee J.-G., Kim Y.-K. Effect of sodium addition on structural and magnetic properties of solid state processed SrFe12-xAlxO19 (x ≤ 4). Appl. Phys. A: Mater. Sci. and Proces., 2022, 128 (12).

17. Wu C., Liu Q., Yin Q., Chen J., Zhang H., Liu Y. Room-temperature multiferroic properties of Al-doped hexaferrites sintered at high oxygen atmospheric concentrations. Ceram. Int., 2021, 47 (15), P. 21398–21403.

18. Sözeri H., Genc¸ F., Almessiere M.A., U¨ nver I˙.S., Korkmaz A.D., Baykal A. CR3+-substituted Ba nanohexaferrites as high-quality microwave absorber in X band. J. Alloys Compd., 2019, 779, P. 420–426.

19. Turchenko V., Kostishin V.G., Trukhanov S., Damay F., Balasoiu M., Bozzo B., Fina I., Burkhovetsky V.V., Polosan S., Zdorovets M.V., Kozlovskiy A.L., Astapovich K.A., Trukhanov A. Structural features, magnetic and ferroelectric properties of SrFe10:8In1:2O19 compound. Mater. Res. Bull., 2021, 138, 111236.

20. Huang, K., Yu, J., Zhang, L., Xu, J., Li, P., Yang, Z., Kan, X. Synthesis and characterizations of magnesium and titanium doped M-type barium calcium hexaferrites by a solid state reaction method. J. Alloys Comp., 2020, 825, 154072.

21. Vinnik D. A., Gudkova S.A., Zhivulin V.E., Trofimov E.A. Ferrite-based solid solutions: Structure types, preparation, properties, and potential applications. Inorg. Mater., 2021, 57 (11), P. 1109–1118.

22. Zhilina E.M., Russkikh A.S., Krasikov S.A., Osinkina T.V., Rempel A.A. Synthesis of High-Entropy Alloy AlTiZrVNb by Aluminothermic Reaction. Inorg. Chem., 2022, 67 (6), P. 825–828.

23. Teplonogova M.A, Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. High-entropy layered rare earth hydroxides. Inorg. Chem., 2022, 61 (49), P. 19817–9827.

24. Wang B., Yao J., Wang J., Chang A. Spinel-type high-entropy (Co0:2Mn0:2Fe0:2Zn0:2Ti0:2)3O4 oxides constructed from disordered cations and oxygen vacancies. J. Alloys Compd., 2022, 897, 163188.

25. Vinnik D.A., Zhivulin V.E., Trofimov E.A., Gudkova S.A., Punda A.Y., Valiulina A.N., Gavrilyak M., Zaitseva O.V., Taskaev S.V., Khandaker M.U., Alqahtani A., Bradley D.A., Sayyed M.I., Turchenko V.A., Trukhanov A.V., Trukhanov S.V. A-site cation size effect on structure and magnetic properties of Sm(Eu,Gd)Cr0:2Mn0:2Fe0:2Co0:2Ni0:2O3 high-entropy solid solutions. Nanomaterials, 2022, 12 (1), 36.

26. Dabrowa J., Cie´slak J., Zajusz M., Mo´zdzierz M., Berent K., Mikula A., Stepie´n A., ´Swierczek K. Structure and transport properties of the novel (Dy,Er,Gd,Ho,Y)3Fe5O12 and (Dy,Er,Gd,Ho,Y)3Fe5O12 high entropy garnets. J. Eur. Ceram. Soc., 2021, 41, P. 3844–3849.

27. Vinnik D.A., Trofimov E.A., Zhivulin V.E., Zaitseva O.V., Gudkova, S.A., Starikov A.Y., Zherebtsov D.A., Kirsanova A.A., H¨assner M., Niewa R. High-entropy oxide phases with magnetoplumbite structure. Ceram. Int., 2019, 45 (10), P. 12942–12948.

28. Vinnik D.A., Trofimov E.A., Zhivulin V.E., Zaitseva O.V., Zherebtsov D.A., Starikov A.Y., Sherstyuk D.P., Gudkova S.A., Taskaev S.V. The new extremely substituted high entropy (Ba,Sr,Ca,La)Fe6-x(Al,Ti,Cr,In,Cu,W)xO19 microcrystals with magnetoplumbite structure. Ceram. Int., 2020, 46 (7), P. 9656–9660.

29. Vinnik D.A., Zhivulin V.E., Trofimov E.A., Starikov A.Y., Zherebtsov D.A., Zaitseva O.V., Gudkova S.A., Taskaev S.V., Klygach D.S., Vakhitov M.G., Sander E.E., Sherstyuk D.P. Trukhanov A.V. Extremely polysubstituted magnetic material based on magnetoplumbite with a hexagonal structure: Synthesis, structure, properties, prospects. Nanomater., 2019, 9 (4).

30. Trukhanov A.V., Vinnik D.A., Trofimov E.A., Zhivulin V.E., Zaitseva O.V., Taskaev S.V., Zhou D., Astapovich K.A., Trukhanov S.V., Yang Y. Correlation of the Fe content and entropy state in multiple substituted hexagonal ferrites with magnetoplumbite structure. Ceram. Int., 2021, 47, P. 17684–17692.

31. Zhivulin V.E., Trofimov E.A., Zaitseva O.V., Sherstyuk D.P., Cherkasova N.A, Taskaev S.V., Vinnik D.A., AlekhinaYu.A., Perov N.S., Tishkevich D.I., Zubar T.I., Trukhanov A.V., Trukhanov S.V. Effect of configurational entropy on phase formation, structure, and magnetic properties of deeply substituted strontium hexaferrites. Ceram. Int., 2023, 49 (1), P. 1069–1084.

32. Obradors X., Solans X., Collomb A., Samaras D., Rodriguez J., Pernet M., Font-Altaba M. Crystal structure of strontium hexaferrite SrFe12O19. J. Sol. St. Chem., 1988, 72 (2), P. 218–224.

33. Vinnik D.A., Trofimov E.A., Zherebtsov D.A. Experimental Study and Thermodynamic Modeling of Phase Equilibria in PbO–Fe2O3 System. In Materials Science Forum Trans Tech Publications, Ltd., 2016, 870, P. 282–285.

34. Nevˇriva M., Fischer K. Contribution to the binary phase diagram of the system PbO–Fe2O3. Mater. Res. Bull., 1986, 21, P. 1285–1290.

35. Jonker H.D. Investigation of the phase diagram of the system PbO–B2O3–Fe2O3–Y2O3 for the growth of single crystals of Y3Fe5O12. J. Cryst. Growth., 1975, 28, P. 231–239.

36. Mountvala A.J., Ravitz S.F. Phase Relations and Structures in the System PbO–Fe2O3. J. Am. Ceram. Soc., 1962, 45, P. 285–288.

37. Diop I., David N., Fiorani J.M., Podor R., Vilasi M. Experimental investigations and thermodynamic description of the PbO–Fe2O3 system. Thermochimica Acta, 2010, 510, P. 202–212.

38. Aleshko-Ozhevskii O.P., Faek M.K., Yamzin I.I. A neutron diffraction study of the structure of magnetoplumbite. Soviet Physics – Crystallography, 1969, 14, P. 367–369.

39. Obradors X., Collomb A., Pernet M., Samaras D., Joubert J.C. X-ray analysis of the structural and dynamic properties of BaFe12O19 hexagonal ferrite at room temperature. J. Solid State Chem., 1985, 56 (2), P. 171–181.

40. Bouvaist J., Weigel D. Sesquioxyde de plomb, Pb2O3. I. Determination de la structure. Acta Crystallogr. A, 1970, 26, P. 501–510.


Рецензия

Для цитирования:


Зайцева О.В., Трофимов Е.А., Живулин В.Е., Остовари Могаддам A., Самойлова О.В., Литвинюк К.С., Зыкова А.Р., Михайлов Д.В., Гудкова С.А., Винник Д.А. Синтез высокоэнтропийных оксидов PbFe2.4X2.4Y2.4Ga2.4In2.4O19 со структурой магнетоплюмбита. Наносистемы: физика, химия, математика. 2023;14(3):354-362. https://doi.org/10.17586/2220-8054-2023-14-3-354-362

For citation:


Zaitseva O.V., Trofimov E.A., Zhivulin V.E., Ostovari Mogaddam A., Samoilova O.V., Litvinyuk K.S., Zykova A.R., Mikhailov D.V., Gudkova S.A., Vinnik D.A. Synthesis of PbFe2.4X2.4Y2.4Ga2.4In2.4O19 high-entropy oxides with the magnetoplumbite structure. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(3):354-362. https://doi.org/10.17586/2220-8054-2023-14-3-354-362

Просмотров: 7


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)