Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Stable hydrosol prepared by deaggregation from laser synthesis nanodiamond

https://doi.org/10.17586/2220-8054-2023-14-3-372-379

Abstract

The new applications of nanodiamond in biology and nuclear physics require the use of products with a low content of impurities. One of the possible methods for obtaining a high-purity nanodiamond is the recently developed laser synthesis method. The aim of this work was to study the state of aggregation of laser synthesis nanodiamond particles in aqueous suspensions and to test the possibility of deaggregation of laser nanodiamond. The process of deaggregation of a laser synthesis nanodiamond is investigated. It was shown that the previously described process of deaggregation by milling with baking soda and the usual process of deaggregation give almost the same results. A solid phase from a colloidal solution of a laser synthesis nanodiamond has been isolated and investigated. The low content of impurities in the studied product was confirmed (less than 0.1% at.), the Raman, IR, and EPR spectra were studied.

About the Authors

A. E. Aleksenskii
Ioffe Institute
Russian Federation

Aleksandr E. Aleksenskii – Division of Solid State Electronics

Polytechnicheskaya 26, 194021 St. Petersburg



M. V. Baidakova
Ioffe Institute
Russian Federation

Marina V. Baidakova – Division of Solid State Electronics

Polytechnicheskaya 26, 194021 St. Petersburg



A. D. Trofimuk
Ioffe Institute
Russian Federation

Andrey D. Trofimuk – Division of Solid State Electronics

Polytechnicheskaya 26, 194021 St. Petersburg



B. B. Tudupova
Ioffe Institute
Russian Federation

Biligma B. Tudupova – Division of Solid State Electronics

Polytechnicheskaya 26, 194021 St. Petersburg



A. S. Chizhikova
Ioffe Institute
Russian Federation

Anastasia S. Chizhikova – Division of Solid State Electronics

Polytechnicheskaya 26, 194021 St. Petersburg



A. V. Shvidchenko
Ioffe Institute
Russian Federation

Aleksandr V. Shvidchenko – Division of Solid State Electronics

Polytechnicheskaya 26, 194021 St. Petersburg



References

1. [1] Dideikin A. Applications of Detonation Nanodiamonds in Detonation Nanodiamonds: Science and Applications. Jenny Stanford Publishing, Singapore, 2014, 346 p.

2. [2] Panich A., Salti M., Prager O., Swissa E., Kulvelis Yu., Yudina E., Aleksenskii A., Goren Sh., Vul’ A., Shames A. PVP-coated Gd-grafted nanodiamonds as a novel and potentially safer contrast agent for in vivo MRI. Magn Reson Med., 2021. 8, P. 1–8.

3. [3] Panich A., Shames A., Aleksenskii A., Yudina E., Vul A.Ya. Manganese-grafted detonation nanodiamond, a novel potential MRI contrast agent. Diamond & Related Materials, 2021, 119, 108590

4. [4] Jingru Xu, Mengjie Gu, Lissa Hooi, Tan Boon Toh, Dexter Kai Hao Thng, Jhin Jieh Limb, Edward Kai-Hua Chow. Enhanced penetrative siRNA delivery by a nanodiamond drug delivery platform against hepatocellular carcinoma 3D models. Nanoscale, 2021, 13, 16131

5. [5] Artem’ev V. Estimation of neutron reflection from nanodispersed materials. At. Energy, 2006, 101, P. 901–904.

6. [6] Nesvizhevsky V., Lychagin E., Muzychka A., Strelkov A., Pignol G., Protasov K. The reflection of very cold neutrons from diamond powder nanoparticles. Nucl. Instrum. Methods, 2008, 595, P. 631–636.

7. [7] Aleksenskii A., Bleuel M., Bosak A., Chumakova A., Dideikin A., Dubois M., Korobkina E., Lychagin E., Muzychka A., Nekhaev G., et al. Clustering of Diamond Nanoparticles. Fluorination and Efficiency of Slow Neutron Reflectors. Nanomaterials, 2021, 11, 1945.

8. [8] Kruger A., Kataoka F., Ozawa M., Fujino T., Suzuki Y., Aleksenskii A., Vul‘ A., Osawa E. Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon, 2005, 43 (8), P. 1722–1730.

9. [9] Williams O., Hees J., Dieker C., Jager W., Kirste L., Nebel C. Size-Dependent Reactivity of Diamond Nanoparticles. ACS Nano, 2010, 4 (8), P. 4824–4830.

10. [10] Aleksenskiy A., Eydelman E., Vul’A. Deaggregation of Detonation Nanodiamonds. Nanosci. Nanotechnol. Lett., 2011, 3, P. 68–74.

11. [11] Aleksenskii A., Kirilenko D., Trofimuk A., Shvidchenko A., Yudina E. Deaggregation of polycrystalline diamond synthesized from graphite by shock-compression. Fullerenes, Nanotubes and Carbon Nanostructures, 2021, 29 (10), P. 779–782.

12. [12] Aleksenskii A. Technology of preparation of detonation nanodiamond in Detonation Nanodiamonds: Science and Applications, Jenny Stanford Publishing, Singapore, 2014, 346 p.

13. [13] Perevedentseva E., Peer D., Uvarov V., Zousman B., Levinson O. Nanodiamonds of Laser Synthesis for Biomedical Applications. J. of Nanoscience and Nanotechnology, 2015, 15, P. 1045–1052.

14. [14] Panich A., Shames A., Zousman B., Levinson O. Magnetic resonance study of nanodiamonds prepared by laser-assisted technique. Diamond & Related Materials, 2012, 23, P. 150–153

15. [15] Baidakova M., Kukushkina Yu., Sitnikova A., Yagovkina M., Kirilenko D., Sokolov V., Shestakov M., Vul’ A., Zousman B., Levinson O. Structure of Nanodiamonds Prepared by Laser Synthesis. Physics of the Solid State, 2013, 55 (8), P. 1747–1753.

16. [16] Nee C.-H., et al. Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol. Nature Sci. Rep., 2016, 6, 33966.

17. [17] Armstrong M., Lindsey R., Goldman N., Nielsen H., Stavrou E., Fried L., Zaug J., Bastea S. Ultrafast shock synthesis of nanocarbon from a liquid precursor. Nature Comm., 2020, 11, 353.

18. [18] Stehlik S., Henych J., Stenclova P., Kral R., Zemenova P., Pangrac J., Vanek O., Kromka A., Rezek B. Size and nitrogen inhomogeneity in detonation and laser synthesized primary nanodiamond particles revealed via salt-assisted deaggregation. Carbon, 2021, 171, P. 230–239.

19. [19] Mochalin V., Turcheniuk K., Trecazzi C., Deeleepojananan C. Salt-Assisted Ultrasonic Deaggregation of Nanodiamond. ACS Appl. Mater. Interfaces, 2016, 8, P. 25461–25468.

20. [20] Topas Version 5. Technical reference. Brucker AXS, Karlsruhe, Germany, 2014. URL: https://www.bruker.com/en/products-andsolutions/diffractometers-and-scattering-systems/x-ray-diffractometers/diffrac-suite-software/diffrac-topas.html

21. [21] Hom T., Kiszenik W., Post B. Accurate lattice constants from multiple reflection measurements. II. Lattice constants of germanium silicon, and diamond. J. Appl. Cryst., 1975, 8, P. 457–458.

22. [22] Shenderova O., Vlasov I., Turner S., Gustaaf Van Tendeloo, Orlinskii S., Shiryaev A., Khomich A., Sulyanov S., Jelezko F., Wrachtrup J. Nitrogen Control in Nanodiamond Produced by Detonation Shock-Wave-Assisted Synthesis. J. Phys. Chem. C, 2011, 115, P. 14014–14024.

23. [23] Meilakhs A., Koniakhin S. New explanation of Raman peak redshift in nanoparticles. Superlattices Microstruct., 2017, 110, P. 319–323.


Review

For citations:


Aleksenskii A.E., Baidakova M.V., Trofimuk A.D., Tudupova B.B., Chizhikova A.S., Shvidchenko A.V. Stable hydrosol prepared by deaggregation from laser synthesis nanodiamond. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(3):372-379. https://doi.org/10.17586/2220-8054-2023-14-3-372-379

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)