The point spectrum of the three-particle Schr ¨odinger operator for a system comprising two identical bosons and one fermion on Z.
https://doi.org/10.17586/2220-8054-2024-15-4-438-447
Abstract
We consider the Hamiltonian of a system of three quantum particles (two identical bosons and a fermion) on the one-dimensional lattice interacting by means of zero-range attractive or repulsive potentials. We investigate the point spectrum of the three-particle discrete Schrödinger operator H(K), K ∈ T which possesses infinitely many eigenvalues depending on repulsive or attractive interactions, under the assumption that the bosons in the system have infinite mass
Keywords
About the Authors
Z. I. MuminovUzbekistan
Zahriddin I. Muminov
100066, Tashkent; 100174, Tashkent
V. U. Aktamova
Uzbekistan
Vasila U. Aktamova
140103, Samarkand
References
1. Winkler K. et al. Repulsively bound atom pairs in an optical lattice. Nature, 2006, 441, P. 853–56.
2. Bloch I. Ultracold quantum gases in optical lattices. Nat. Phys., 2005, 1, P. 23–30.
3. Jaksch D.and Zoller P. The cold atom Hubbard toolbox. Ann. of Phys., 2005, 315(1), P. 52–79.
4. Thalhammer G. et al. Inducing an optical Feshbach resonance via stimulated Raman coupling. Phys.Rev. A., 2005, 71, P. 033403.
5. Hofstetter W., et al. High-temperature superfluidity of fermionic atoms in optical lattices. Phys. Rev. Lett., 2002, 89, P. 220407.
6. Lewenstein M. et al. Atomic Bose-Fermi mixtures in an optical lattice. Phys. Rev. Lett., 2004, 92, P. 050401.
7. Efimov V.N. Energy levels arising from resonant two-body forces in a three-body system. Physics Letters., 1970, 33(8), P. 563–564.
8. Yafaev D. On the theory of the discrete spectrum of the three-particle Schr¨odinger operator. Math. USSR-Sb., 1974, 23, P. 535–559.
9. Lakaev S.N. The Efimov’s effect of a system of three identical quantum lattice particles. Funct. Anal. Its Appl., 1993, 27, P. 15–28.
10. Lakaev S.N. and Muminov Z.I. The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schr¨odinger Operator. Funct. Anal. Appl., 2003, 37, P. 228–231.
11. Abdullaev Zh.I. and Lakaev S.N. Asymptotics of the Discrete Spectrum of the Three-Particle Schr¨odinger Difference Operator on a Lattice. Theor. Math. Phys., 136, P. 1096–1109.
12. Albeverio S., Lakaev S.N., Muminov Z.I. “Schr¨odinger operators on lattices. The Efimov effect and discrete spectrum asymptotics. Ann. Inst. H. Poincar´e Phys. Theor., 2004, 5, P. 743–772.
13. Dell’Antonio G., Muminov Z.I., Shermatova Y.M. On the number of eigenvalues of a model operator related to a system of three-particles on lattices. J. Phys. A: Math. Theor., 2011, 44, P. 315302.
14. Khalkhuzhaev A.M., Abdullaev J.I., Boymurodov J.K. The Number of Eigenvalues of the Three-Particle Schr¨odinger Operator on Three Dimensional Lattice. Lob. J. Math., 2022, 43(12), P. 3486–3495.
15. Muminov M., Aliev N. Discrete spectrum of a noncompact perturbation of a three-particle Schr¨odinger operator on a lattice. Theor. Math. Phys., 2015, 1823(3), P. 381–396.
16. Muminov Z.I., Aliev N.M., Radjabov T. On the discrete spectrum of the three-particle Schr¨odinger operator on a two-dimensional lattice. Lob. J. Math., 2022, 43(11), P. 3239–3251.
17. Aliev N.M. Asymtotic of the Discrete Spectrum of the Three-Particle Schrodinger Operator on a One-Dimensional Lattice. Lob. J. Math, 2023, 44(2), P. 491–501.
18. Komarov I.V., Ponomarev L.I., and Slavyanov S.Yu. Spheroidal and Coulomb Spheroidal Functions [in Russian]. Nauka, Moscow, 1976.
19. Rabinovich V.S., Roch S. The essential spectrum of Schr¨oinger operators on lattice. J. Phys. A.:Math. Gen., 2006, 39, P. 8377.
20. Albeverio S., Lakaev S., Muminov Z. On the structure of the essential spectrum for the three-particle Schr¨odinger operators on lattices. Math. Nachr., 2007, 280, P. 699–716.
21. Kholmatov Sh.Yu., Muminov Z.I. The essential spectrum and bound states of N -body problem in an optical lattice. J. Phys. A: Math. Theor., 2018, 51, P. 265202.
22. Muminov Z., Lakaev Sh. Aliev N. On the Essential Spectrum of Three-Particle Discrete Schr¨odinger Operators with Short-Range Potentials. Lob. J. Math., 2021, 42(6), P. 1304–1316.
23. Lakaev S.N., Boltaev A.T. The Essential Spectrum of a Three Particle Schr¨odinger Operator on Lattices. Lob. J. Math., 2023, 44(3), P. 1176–1187.
24. Jakubaba-Amundsen D.H. The HVZ Theorem for a Pseudo-Relativistic Operator. Ann. Henri Poincar´e, 2007, 8, P. 337–360.
Review
For citations:
Muminov Z.I., Aktamova V.U. The point spectrum of the three-particle Schr ¨odinger operator for a system comprising two identical bosons and one fermion on Z. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(4):438-447. https://doi.org/10.17586/2220-8054-2024-15-4-438-447