Crystalline LiYF4:Nd3+ nanoparticles synthesized via laser ablation method in water solutions of ethanol.
https://doi.org/10.17586/2220-8054-2024-15-4-481-486
Abstract
In this work, a set of crystalline LiYF4:Nd3+ nanoparticles with an average size of about 35 nm, were successfully synthesized via laser ablation method in liquid (combination of ethanol and water). The samples have trigonal structure corresponding to LiYF4 host. The spectral and kinetic characteristics of the synthesized nanoparticles corresponded to the characteristics of the target LiYF4:Nd3+ bulk crystal. In particular, the luminescence decay curves for the 4F3/2 →4I11/2 radiative transition (Nd3+) are single-exponential and the decay times were around 517 μs, which is typical for Nd3+ in LiYF4 host. It has been established that the decrease in the power density of laser radiation energy leads to the increase of the average particle size
Keywords
About the Authors
A. L. DymovaRussian Federation
Anna L. Dymova
18 Kremlyovskaya str, Kazan, 420008
V. A. Prikazchikov
Russian Federation
Vadim A. Prikazchikov
18 Kremlyovskaya str, Kazan, 420008
A. V. Astrakhantseva
Russian Federation
Anna V. Astrakhantseva
18 Kremlyovskaya str, Kazan, 420008
T. M. Minnebaev
Russian Federation
Timur M. Minnebaev
18 Kremlyovskaya str, Kazan, 420008
M. R. Zaitov
Russian Federation
Mintimir R. Zaitov
18 Kremlyovskaya str, Kazan, 420008
M. S. Pudovkin
Russian Federation
Maksim S. Pudovkin
18 Kremlyovskaya str, Kazan, 420008
A. S. Nizamutdinov
Russian Federation
Alexey S. Nizamutdinov
18 Kremlyovskaya str, Kazan, 420008
References
1. Compagnini G., Scalisi A.A., Puglisi O. Production of gold nanoparticles by laser ablation in liquid alkanes. Journal of Applied Physics, 2003, 94(12), P. 7874–7877.
2. Lau Truong S., Levi G., Bozon-Verduraz F., Petrovskaya A.V., Simakin A.V., Shafeev G.A. Generation of Ag nanospikes via laser ablation in liquid environment and their activity in SERS of organic molecules. Applied Physics A, 2007, 89, P. 373–376.
3. Sajti C.L., Giorgio S., Khodorkovsky V., Marine W. Femtosecond laser synthesized nanohybrid materials for bioapplications. Applied Surface Science, 2007, 253(19), P. 8111–8114.
4. Usui H., Shimizu Y., Sasaki T., Koshizaki N. Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. The Journal of Physical Chemistry B, 2005, 109(1), P. 120–124.
5. Amans D., Malaterre C., Diouf M., Mancini C., Chaput F., Ledoux G., Perriat P. Synthesis of oxide nanoparticles by pulsed laser ablation in liquids containing a complexing molecule: impact on size distributions and prepared phases. The Journal of Physical Chemistry C, 2011, 115(12), P. 5131–5139.
6. Ledoux G., Amans D., Dujardin C., Masenelli-Varlot K. Facile and rapid synthesis of highly luminescent nanoparticles via pulsed laser ablation in liquid. Nanotechnology, 2009, 20(44), P. 445605.
7. Makarov G.N. Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography. Physics-Uspekhi, 2013, 56(7), P. 643.
8. Buesser B., Groehn A.J. Multiscale Aspects of Modeling Gas Phase Nanoparticle Synthesis. Chemical Engineering & Technology, 2012, 35(7), P. 1133–1143.
9. Naser H., Alghoul M.A., Hossain M.K., Asim N., Abdullah M.F., Ali M.S., Amin N. The role of laser ablation technique parameters in synthesis of nanoparticles from different target types. Journal of Nanoparticle Research, 2019, 21, P. 1–28.
10. Wang Y.L., Xu W., Zhou Y., Chu L.Z., Fu G.S. Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation. Laser and Particle Beams, 2007, 25(1), P. 9–13.
11. Al-Azawi M.A., Bidin N., Bououdina M., Abbas K.N., Al-Asedy H. J., Ahmed O.H., Thahe A.A. The effects of the ambient liquid medium on the ablation efficiency, size and stability of silver nanoparticles prepared by pulse laser ablation in liquid technique. J. Teknol, 2016, 78(3), P. 7–11.
12. Pereira H., Moura C.G., Miranda G., Silva F.S. Influence of liquid media and laser energy on the production of MgO nanoparticles by laser ablation. Optics & Laser Technology, 2021, 142, P. 107181.
13. Wang H., Odawara O., Wada H. Facile and chemically pure preparation of YVO4:Eu3+ colloid with novel nanostructure via laser ablation in water. Scientific Reports, 2016, 6(1), P. 20507.
14. Barsanti S., Favilla E., Bicchi P. Emission and electron/ion analysis of the ablated plume from LiYF4 crystals doped with Tm3+ or Nd3+ ions. Radiation Physics and Chemistry, 2007, 76(3), P. 512–515.
15. Barsanti S., Cornacchia F., Di Lieto A., Toncelli A., Tonelli M., Bicchi P. Nd3+-doped fluoride film grown on LiYF4 substrate by pulsed laser deposition. Thin Solid Films, 2008, 516(8), P. 2009–2013.
16. Lukinova E., Farukhshin I., Nizamutdinov A., Madirov E., Semashko V., Pudovkin M. Ce3+ doped LiYF4 nanoparticles fabrication by laser ablation. In EPJ Web of Conferences, 2017, 161, P. 03014.
17. Rawat R., Tiwari A., Arun N., Rao S.N., Pathak A.P., Tripathi A. Solvents effect on the morphology and stability of Cu/CuO nanoparticles synthesized at high fluence laser ablation. ChemistrySelect, 2019, 4(35), P. 10471–10482.
18. Naderi-Samani H., Razavi R.S., Mozaffarinia R. Investigating the effect of 532 nm and 1064 nm wavelengths and different liquid media on the qualities of silver nanoparticles yielded through laser ablation. Materials Chemistry and Physics, 2023, 305, P. 128001.
19. Goncharova D.A., Kharlamova T.S., Reutova O.A., Svetlichnyi V.A. Water–ethanol CuOx nanoparticle colloids prepared by laser ablation: Colloid stability and catalytic properties in nitrophenol hydrogenation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, P. 126115.
20. Thoma R.E., Brunton G.D., Penneman R.A., Keenan T.K. Equilibrium relations and crystal structure of lithium fluorolanthanate phases. Inorganic Chemistry, 1970, 9(5), P. 1096–1101.
21. Alakshin E.M., Kondratyeva E.I., Nuzhina D.S., Iakovleva M.F., Kuzmin V.V., Safiullin K.R., Tagirov M.S. The self-assembly of DyF3 nanoparticles synthesized by chloride-based route. Journal of Nanoparticle Research, 2018, 20, P. 1–11.
22. Pudovkin M.S., Ginkel A.K., Morozov O.A., Kiiamov A.G., Kuznetsov M.D. Highly-sensitive lifetime optical thermometers based on Nd3+, Yb3+:YF3 phosphors. Journal of Luminescence, 2022, 249, P. 119037.
23. Anbharasi L., Rekha E.B., Rahul V.R., Roy B., Gunaseelan M., Yamini S., Senthilselvan J. Tunable emission and optical trapping of upconverting LiYF4: Yb, Er nanocrystal. Optics & Laser Technology, 2020, 126, P. 106109.
24. Fedorov P.P., Semashko V.V., Korableva S.L. Lithium rare-earth fluorides as photonic materials: 1. Physicochemical characterization. Inorganic Materials, 2022. 58(3), P. 223–245.
25. Ximendes E.C., Rocha U., Kumar K.U., Jacinto C., Jaque D. LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window. Applied Physics Letters, 2016, 108(25).
26. Villa I., Vedda A., Cantarelli I.X., Pedroni M., Piccinelli F., Bettinelli M., Garcna D.J. 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Research, 2015, 8, P. 649–665.
Review
For citations:
Dymova A.L., Prikazchikov V.A., Astrakhantseva A.V., Minnebaev T.M., Zaitov M.R., Pudovkin M.S., Nizamutdinov A.S. Crystalline LiYF4:Nd3+ nanoparticles synthesized via laser ablation method in water solutions of ethanol. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(4):481-486. https://doi.org/10.17586/2220-8054-2024-15-4-481-486