Коллоидно-химические свойства золя V2O5 ∙ nH2O
https://doi.org/10.17586/2220-8054-2024-15-4-487-497
Аннотация
В данной работе были изучены коллоидные свойства лиофильной дисперсной системы V2O5 ∙ nH2O золя, полученной путем термолиза порошка V2O5 пероксидом водорода. Дисперсионная фаза существует в виде нанолистов. Оптимальное мольное соотношение V2O5 и H2O2 для синтеза золя составляет [1]:[30], а возможная концентрация V2O5 во всей коллоидной системе составляет от 0,3 до 1,6 мас.%. Существование наночастиц в этой дисперсной системе и диапазон pH, обеспечивающий стабильность золя, соответствуют фазовой диаграмме ванадия (V) в водной среде. Абсолютная величина дзета-потенциала частиц увеличивается с увеличением исходной концентрации при синтезе золя и уменьшением ионной силы дисперсионной среды. Фактор формы частицы, определяемый формулой Эйнштейна, имеет значение 9,608. По теории ДЛФО также были построены потенциальные кривые парного взаимодействия между наночастицами.
Ключевые слова
Об авторах
Х. ЛвинРоссия
О. В. Яровая
Россия
Список литературы
1. Top K. Le, Phuong V. Pham. Recent advances in vanadium pentoxide (V2O5) towards related applications in chromogenics andbeyond: fundamentals, progress, and perspectives. J. of Materials Chemistry C, 2022, 10, P. 1–55.
2. Xuyan L., Jiahuan Z. V2O5-Based nanomaterials: synthesis and their applications. RSC Adv., 2018, 8, P. 4014–4031.
3. Ehsan K. Recent advances in synthesis, properties, and applications of vanadium oxide nanotube. Microchemical J., 2019, 145, P. 966–978.
4. Thi Dieu H.N., Vo K.D. Electronic and optical excitation properties of vanadium pentoxide V2O5. Computational Materials Science, 2022, 198, P. 1–8.
5. Sukrit S., Gaihua Ye. V2O5: A 2D van der Waals Oxide with Strong In-Plane Electrical and Optical Anisotropy. ACS Appl Mater Interfaces, 2017, 9 (28), P. 23949–23956.
6. Ryan R.L., David M.K. Catalytic Applications of Vanadium: A Mechanistic Perspective Catalytic Applications of Vanadium: A Mechanistic Perspective. Chemical Reviews, 2019, 119, P. 2128–2191.
7. Kaichev V., Popova G.Y. Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst. J. of Catalysis, 2014, 311, P. 59–70.
8. David V.F., William J.M. The formation of propane, propylene, and acetone from 2-propanol over vanadium pentoxide and modified vanadium pentoxide catalysts. Canadian J. of Chemistry, 1978, 56, P. 28–39.
9. Bars J. Le, Auroux A. Active Sites of V2O5/γ-Al2O3 catalysts in the oxidative dehydrogenation of ethane. J. of Catalysis, 1996, 162, P. 250–259.
10. Lemke K., Ehrich H. Selective hydroxylation of benzene to phenol over supported vanadium oxide catalysts. Appl. Catal. A Gen. 2003, 243, P. 41–51.
11. Lukasz W., Maria Z. Insight into pathways of methylene blue degradation with H2O2 over mono and bimetallic Nb, Zn oxides. Applied Catalysis B: Environmental, 2017, 224, P. 634–647.
12. Alain M., Christian M.J. V2O5 thin films for energy storage and conversion. AIMS Materials Science, 2018, 5 (3), P. 349–401.
13. Huguenin F., Martins A.R. Nanocomposites from V2O5 and Lithium-Ion Batteries. In: Souza F., Leite E. (eds) Nanoenergy, 2017, P. 223–249.
14. Lai V.D., To T.N. Light-assisted room temperature ammonia gas sensor based on porphyrin-coated V2O5 nanosheets. Sensors and Actuators B: Chemical, 2024, 409, P. 135–150.
15. Dongwon S., Jiseon K. Evaluation of V2O5 Film-Based Electrochromic Device with Dry-Deposited Ion Storage Layer. Int. J. Precis. Eng. Manuf., 2023, 24, P. 119–128.
16. Ma O., Batal F.E. Impact of V2O5 and Gamma Ray Irradiation on the Optical and Structural FTIR Spectra of Lithium Phosphate Glass. Global J. Eng. Sci., 2019, 3 (4), P. 1–8.
17. Gary A.P., Lisa W. Effects of Aging Time on V2O5 Sol-Gel Coatings. J. of Sol-Gel Science and Technology, 1994, 3, P. 57–62.
18. Keiji Y., Tatsuro M. Dynamics of V2O5 Sol by Measurement of Ultrasonically Induced Birefringence. J. Appl. Phys., 1994, 33, P. 2901–2904.
19. Gotic M., Popovic S. Music Sol-gel synthesis and characterization of V2O5 powders. Materials Letters, 2003, 57, P. 3186–3192.
20. Sanchez C., Nabavi M. Synthesis and characterization of vanadium oxide gels from alkoxy-vanadate precursors. Mat. Res. Soc. Symp. Proc., 1988, 121, P. 93–104.
21. Wen C., Junfeng P. Synthesis of vanadium oxide nanotubes from V2O5 sols. Materials Letters, 2004, 58, P. 2275–2278.
22. Jay Singh, Kshitij RB Singh, Manish Kumar, Rahul Verma, Ranjana Verma, Priya Malik, Saurabh Srivastava, Ravindra Pratap Singh, Devendra Kumar. Melt-quenched vanadium pentoxide stabilized chitosan nanohybrids for efficient hydrazine detection. Materials Advances, 2021, 2, P. 6665–6675.
23. Yu H.C.W., Dai Y.M.L. Preparation and Optical Properties of V2O5 Nanotube Arrays. J. of Wuhan University of Technology – Mater. Sci. Ed., 2006, 21, P. 38–41.
24. Wang N., Magdassi S., Mandler. D. Simple sol-gel process and one-step annealing of vanadium dioxide thin films: Synthesis and thermochromic properties. Thin Solid Films, 2013, 534, P. 594–598.
25. Huali W., Xuanxuan B. Open-structured V2O5•nH2O nanoflakes as highly reversible cathode material for monovalent and multivalent intercalation batteries. Advanced Energy Materials, 2017, 7, P. 1–8.
26. Orhan ¨O., Pınar F.G. Nano-Crystal V2O5 • nH2O Sol-Gel Films Made by Dip Coating. AIP Proceedings, 2012, 1476, P. 233–240.
27. Nathalie S., Jacques L. Rational design of one-dimensional vanadium (V) oxide nanocrystals: an insight into the physico-chemical parameters controlling the crystal structure, morphology and size of particles. Cryst. Eng. Comm., 2015, 17, P. 6780–6795.
28. Bruno A., Jacques L. Synthesis of Vanadium Oxide Gels from Pyrovanadic Acid Solutions: A 51V NMR Study. J. of Solid-State Chemistry, 1999, 148, P. 16 –19.
29. Craig J.F., Jerzy W.W. Vanadia Gel Synthesis via Peroxovanadate Precursors. 1. In Situ Laser Raman and 51V NMR Characterization of the Gelation Process. J. Phys. Chem. B, 2000, 104, P. 11622–11631.
30. Ahmed S.E., Andrew J.P. Insights into the Exfoliation Process of V2O5 • nH2O nanosheet Formation Using Real-Time 51V NMR. ACS Omega, 2019, 4, P. 10899–10905.
31. Muggin V.N., Khamina L.B. Analytical chemistry of vanadium. Publishing house “Science”, Moscow, 1981, 109 p.
32. Kirsch V.A., Kirsch V.A. Calculation of the van der Waals force between a spherical particle and an infinite cylinder. Advances in Colloid and Interface Science, 2003, 104, P. 311–324.
33. Ohshima H. Theory of colloid and interfacial electric phenomena. Elsevier: Ac. Press., Tokyo, 2006, 490 p.
34. Ohshima H. Biophysical chemistry of biointerfaces. Wiley, Tokyo, 2010, 567 p.
35. Povar I., Spinu O., Zinicovscaia I., Pintilie B., Ubaldini S. Revised Pourbaix diagrams for the vanadium-water system. J. Electrochemical. Sci. Eng., 2019, 9, P. 75–84.
36. Sherif H.K., Zakya H.K. Science and Technology of Polymers and Advanced Materials: Emerging. Springer Science + Business Media LLC. New York, 1998, 900 p.
37. Michael S., Karge H.G. Advanced Zeolite Science and Applications. Studies in Surface and Catalysts, Netherlands, 1994, 700 p.
38. Belokon N.E. Technical reference book for railway workers, physical and mathematical. State Transport Railway Publishing House, Moscow, 1951, 663 p.
39. Nazarov V.V. Colloidal chemistry: Textbook. Delhi Plus, Moscow, 2015, 250 p
Рецензия
Для цитирования:
Лвин Х., Яровая О.В. Коллоидно-химические свойства золя V2O5 ∙ nH2O. Наносистемы: физика, химия, математика. 2024;15(4):487-497. https://doi.org/10.17586/2220-8054-2024-15-4-487-497
For citation:
Lwin H., Yarovaya O.V. olloidal chemical properties of the sol V2O5 · nH2O. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(4):487-497. https://doi.org/10.17586/2220-8054-2024-15-4-487-497