Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Kinetic of colloidal-chemical transformations during the decomposition of ammonia complexes of Zn(II) in alkaline solutions.

https://doi.org/10.17586/2220-8054-2024-15-4-498-509

Abstract

For the closed system (Σ): Zn2+–NH3,aq –NH3,gas, H+–OH–N2,gas, experimental data on the change in the concentration of in the composition of the ammonia complex Zn(NH3)2+ 4 in solution, colloidal particles Zn(OH)2/ZnO in solution and growing film on the reactor walls are presented depending on the synthesis time, zinc concentration and synthesis temperature Ts in the range of 50 –99 C. It has been established that up to 95 C the ion-molecular growth of Zn(OH)2/ZnO clusters in solution (Σ) proceeds in a diffusion-controlled mode of homogeneous growth until reaching of their critical size. Further growth of ther critical clusters is followed by aggregation and coalescence of critical sized clusters into microcrystals with the formation of a film on a glass substrate of various morphologies. The solubility of such a film is determined by the size of critical clusters, which preserves in the growing polycrystal in the form of coherent scattering region (CSR). With an increase in the synthesis temperature to 99 C, the aggregation mechanism is replaced by a faster diffusion-controlled attachment of Zn (II) ammonia complex to the end surface of the growing microcrystals simultaneously in colloid solution and in the film.

About the Authors

M. A. Maksimova
ISSC UB RAS
Russian Federation

Maria A. Maksimova

91, Pervomaiskaya str., 620108, Ekaterinburg



E. V. Polyakov
ISSC UB RAS
Russian Federation

Evgeny V. Polyakov

91, Pervomaiskaya str., 620108, Ekaterinburg



I. V. Volkov
ISSC UB RAS
Russian Federation

Ilya V. Volkov

91, Pervomaiskaya str., 620108, Ekaterinburg



A. P. Tyutyunnik
ISSC UB RAS
Russian Federation

Aleksandr P. Tyutyunnik 

91, Pervomaiskaya str., 620108, Ekaterinburg



A. A. Ioshin
ISSC UB RAS
Russian Federation

Alexey A. Ioshin

91, Pervomaiskaya str., 620108, Ekaterinburg



References

1. Mokrushin S.G. Experimental study of laminar systems. Zhurnal Fizicheskoi Khimii (Journal of Physical Chemistry). 1934, 5(8), P. 1082–1091.

2. Fabian I. Ezema, Chandrakant D. Lokhande, Rajan Jose, [Eds.]. Chemically Deposited Nanocrystalline Metal Oxide Thin Films/Synthesis, Characterizations, and Applications. Springer Cham., 2021, 926 p.

3. Guire M.R.D., Bauermann L.P., Parikh H., Bill J. Chemical Bath Deposition. In: Chemical Solution Deposition of Functional Oxide Thin Films. [Eds.] Waser R., Kosec M., Payne D. Schneller T. Vienna, Springer, 2013, 350 p.

4. Kozhevnikova N.S., Markov V.F., Maskaeva L.N. Chemical precipitation of metal sulfides from aqueous solutions: from thin films to colloidal particles. Journal of Physical Chemistry., 2020, 94(12), P. 1752–1766.

5. Maskaeva L.N., Markov V.F., Tulenin S.S., Forostyanaya N.A. Hydrochemical Deposition of Thin Films of Chalcogenide Films: Practicum. [Ed.] V.F. Markov. Ekaterinburg: M-vo obrazovaniya i nauki Ros. Federation, Urals. Feder. University, 284 p. (in Russian).

6. Fatehah M.O. Hamidi A.A., Serge S. Stability of ZnO nanoparticles in solution. Influence of pH, dissolution, aggregation and disaggregation effects. Journal of Colloid Science and Biotechnology, 2014, 3(1), P. 75–84.

7. Majid A., Bibi M. Wet Chemical Synthesis Methods. In: Cadmium based II-VI Semiconducting Nanomaterials. Topics in Mining, Metallurgy and Materials Engineering. Cham. Springer, 2018.

8. Guillemin S., Rapenne L., Roussel H., Sarigiannidou E., Br´emond G., Consonni V.Formation Mechanisms of ZnO Nanowires: The Crucial Role of Crystal Orientation and Polarity. Journal of Physical Chemistry C, 2013, 117(40), P. 20738–20745.

9. He H., Lao C.S., Chen L.J., Davidovic D., Wang Z.L. Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. Journal of the American Chemical Society, 2005, 127, P. 16376–16377.

10. Comini E., Faglia G., Sberveglieri G., Pan Z.W., Wang Z.L. Stable and high-sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002, 81, P. 1869–1871.

11. He H., Hsin C.-L., Liu J., Chen L.J., Wang Z.L. Piezoelectric gated diode of a single ZnO nanowire. Advance Materials, 2007, 19, P. 781–784.

12. Sun X., Li Q., Jiang J., Mao Y. Morphology-tunable synthesis of ZnO nanoforest and its photoelectrochemical performance. Nanoscale, 2014, 6(15), P. 8769–8780.

13. Woo H.Y., Choi Y., Chung H. et al. Colloidal inorganic nano- and microparticles for passive daytime radiative cooling. Nano Convergence, 2023, 10, P. 17–23.

14. M. Li, L. Tonggu, X. Zhan, T.L. Mega, L. Wang. Cryo-EM Visualization of Nanobubbles in Aqueous Solutions. Langmuir, 2016, 32(43), P. 11111– 11115.

15. Betenekov N.D., Medvedev V.P., Kitaev G.A. Deposition of cadmium sulfide films from solutions on the surface of glass. Radiochemistry, 1978, 20(3), P. 431–438. (in Russian)

16. Kitaev G.A. Investigation of the Processes of Obtaining Metal Chalcogenide Films in Aqueous Solutions Containing Tio-, Selenourea and Sodium Selenosulfate. Doctor thesis. Sverdlovsk, USSR : UPI afer S.M. Kirov, 1978. (in Russian)

17. Lutz H.D., Jung C., Mortel R., Jacobs H., Stahl R. Hydrogen bonding in solid hydroxides with strongly polarizing metal ions, b-Be(OH)2 and o-Zn(OH)2. Spectrochimica Acta Part A, 1998, 54, P. 893–901.

18. Adamson A. Physical Chemistry of Surfaces (in Russian). [Eds.] B.V. Deryagin, Z.M. Zorin V.M. Muller. Moscow : Mir Publ., 1979, 568p

19. Kapta G. The Gibbs Equation versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-Materials. Journal of Nanoscience and Nanotechnology, 2011, 12, P. 1-9.

20. Gusarov V.V. The Role of Non-Autonomous Phases in the Transformations and Properties of Oxide Materials. [Ed.] N.V. Gelfond. Novosibirsk, INH SB RAS, 2023. Thermodynamics and Materials Science. Abstracts of the XV Symposium with international participation. June 3–5, 2023, P. 10.

21. Polyakov E.V., Tzukanov R.R., Volkov I.V., Buldakova L.Yu., Baklanova I.V., Lipina O.A., Zhukov V.P., Kuznetsova Yu.V., Tutyunnik A.P., Maximova M.A. Synthesis and comparative photocatalytic activity of CuO layers on SiO2 substrates. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11(5), P. 601–607.

22. Polyakov E.V., Tsukanov R.R., Buldakova L.Yu., Kuznetsova Yu.V., Volkov I.V., Zhukov V.P., Maksimova M.A., Dmitriev A.V., Baklanova I.V., Lipina O.A., and Tyutyunnik A.P. Chemical Bath Precipitation and Properties of β-Ni(OH)2 Films Prepared in Aqueous Ammoniac Solutions. Russian Journal of Inorganic Chemistry, 2002, 67(6), P. 912–920.

23. Le Pivert M., Martin N., Leprince-Wang Y. Hydrothermally grown ZnO nanostructures for water purification via photocatalysis. Crystals, 2022, 12(308), P. 1–16.

24. P´erez-Hern´andez R., Vel´azquez Salazar J.J., Yacaman M.J. Low-Temperature Synthesis and Growth Mechanism of ZnO Nanorods on Crystalline Si Substrate. Journal of Nano Research, 2011, 14, P. 69–82.

25. Wang M., Jiang L., Jung Kim E., Hahnc S.H. Electronic structure and optical properties of Zn(OH)2: LDA+U calculations and intense yellow luminescence. RSC Advances, 2015, 5, P. 87496–87503.

26. Alnoor H., Chey Ch.O., Pozina G., Liu X., Khranovskyy V., Willander M., Nur O. Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods. AIP Advances, 2015, 5, P. 087180.

27. Baviskar P.K., Nikam P.R., Gargote S.S., Ennaoui Ah., Sankapal B.RControlled synthesis of ZnO nanostructures with assorted morphologies via simple solution chemistry. Journal of Alloys and Compounds, 2013, 551, P. 233–242.

28. Znaidi L. Sol–gel-deposited ZnO thin films: A review. Materials Science and Engineering: B, 2010, 174(1-3), P. 18–30.

29. Polyakov E.V., Maksimova M.A., Kuznetsova Yu.V., Buldakova L.Yu. Colloidal-chemical mechanism of Zn(OH)2–ZnO layer formation at the glass – ammonia solution – Zn(II) interface. Nanosystems: Physics, Chemistry, Mathematics, 2023, 14(2), P. 231–241.

30. Gonzalez-Chan I.J., Moguel Z.P., Oliva A.I. Deposition of ZnO thin films by chemical bath technique: physicochemical conditions and characterization. ECS Journal of Solid State Science and Technology, 2019, 8(9), P. 536–544.

31. Craig V.S.J., Krafft M.P.. Hot Topic – Nanobubbles and Nanodroplets Nanobubbles and Nanodroplets: from Basics to Applications. Current Opinion in Colloid & Interface Science, 2021, 55, P. 101516.

32. Xu-yu Zhang, Qian-shuai Wang, Zhong-xian Wu, Dong-ping Tao. An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles. International Journal of Minerals, Metallurgy and Materials, 2020, 27(2), P. 152–161.

33. Kahraman S., C¸ akmak H.M., C¸ etinkaya S., C¸ etinkara H.A., G¨uder H.S. CBD grown ZnO nanostructures: effects of solution temperature. International Journal of Materials Research, (formerly Z. Metallkd.), 2013, 104(8), P. 798–804.

34. Trejo-Ramos A.I., Mart´ın-Varguez P.E., Gonzalez-Chan I.J., Oliva A.I. Algorithm to obtain the species distribution diagrams and solubility curves for depositing ZnS, ZnO, and Zn(OH)2 films in aqueous solution. Computational and Theoretical Chemistry, 2021, 1202(113325), P. 1–8.

35. Molefe F.V., Koao L.F., Dejene B.F., Swart H.C. Phase formation of hexagonal wurtzite ZnO through decomposition of Zn(OH)2 at various growth temperatures using CBD method. Optical Materials, 2015, 46, P. 292–298.

36. Ki-Woong Chae, Qifeng Zhang, Jeong Seog Kim, Yoon-Ha Jeong, Guozhong Cao. Low-temperature solution growth of ZnO nanotube arrays. Beilstein journal of nanotechnology, 2010, 1, P. 128–134.

37. Williamson G., Hall W. X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1953, 1, P. 22–31.

38. Polyakov E.V., Maksimova M.A., Kuznetsova Y.V., Buldakova L.Y. Colloidal-chemical mechanism of growth of Zn(OH)2–ZnO layers in the glassammonia solution interface Zn(II). OOO “GeLime”, Proceeding of All-Russian Conference ”Solid State Chemistry and Functional Materials-2022, XIV Symposium on Functional Materials. Ekaterinburg, 2022, P. 278–280. (in Russian)

39. Balzar D. Modeling of x-ray diffraction line broadening with the voigt function: applications to high-tc superconductors. Colorado, National Institute of Standards and Technology, 1993, 87 p, NISTIR 3998.

40. Thanh N.T.K. Maclean N. Mahiddine S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chemical Reviews, 2014, 114, P. 7610–7630.

41. Cheng J.J., Nicaise S.M., Berggren K.K., Gradeˇcak S. Dimensional tailoring of hydrothermally-grown zinc oxide nanowire arrays. Nano Letters, 2016, 16(1), P. 753–759.

42. Lining Yang, Jing Wang, Lan Xiang. Hydrothermal synthesis of ZnO whiskers from e-Zn(OH)2 in NaOH/Na2SO4 solution. Particuology, 2015, 19, P. 113–117.

43. Farhat O.F., Halim M.M., Abdullah M.J., Ali M.K.M., Allam N.K. Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates. Beilstein journal of nanotechnology, 2015, 6, P. 720–725.

44. Koao L.F., Dejene F.B., Swart H.C. Properties of flower-like ZnO nanostructures synthesized using the chemical bath deposition. Materials Science in Semiconductor Processing, 2014, 27, P. 33–34.

45. Mamedova M.T. Kinetics and thermodynamics of Zn2+ ion sorption on the Na-form of catio-exchanger KB-4p-2. Actual Problems of the Humanities and Natural Sciences, 2012, 1. (in Russian)

46. Acharyya D., Bhattacharyya P. An efficient BTX sensor based on ZnO nanoflowers grown by CBD method. Solid-State Electronics, 2015, 106, P. 18–26.

47. Lausecker C., Salem B., Baillin X., Consonni V. Modeling the elongation of nanowires grown by chemical bath deposition using a predictive approach. Journal of Physical Chemistry C, 2019, 123, P. 29476–29483


Review

For citations:


Maksimova M.A., Polyakov E.V., Volkov I.V., Tyutyunnik A.P., Ioshin A.A. Kinetic of colloidal-chemical transformations during the decomposition of ammonia complexes of Zn(II) in alkaline solutions. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(4):498-509. https://doi.org/10.17586/2220-8054-2024-15-4-498-509

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)