Composite sorbent based on Fe3O4 with Fe(N2H4)xCly for the removal of Chromium(VI) from wastewater.
https://doi.org/10.17586/2220-8054-2024-15-4-510-519
Abstract
The paper presents a methodology for the synthesis of iron complex with hydrazine hydrate Fe(N2H4)xCly . The Fe(N2H4)xCly complex was investigated by X-ray phase analysis and scanning electron microscopy. Upon hydrolysis, the Fe(N2H4)xCly complex forms a composite sorbent, which is Fe3O4 in a shell of Fe(N2H4)xCly complex. The composite sorbent can be used to treat wastewater from Cr(VI) ions and is effective in the pH range of 2 to 12. Based on the adsorption and electrokinetic potential data, a conclusion about the nature of the terminal groups of the adsorbent was made, a scheme of the structure of its electrical double layer and the adsorption mechanism were proposed. Depending on the conditions, Cr(VI) can be adsorbed on the composite sorbent or reduced to Cr(III). The efficiency of the composite sorbent in the removal of Cr(VI) ions was tested on a sample of real wastewater.
Keywords
About the Authors
D. P. OrdinartsevRussian Federation
Denis P. Ordinartsev
101, Amundsen street, Yekaterinburg, 620016
N. V. Pechishcheva
Russian Federation
Nadezhda V. Pechishcheva
101, Amundsen street, Yekaterinburg, 620016; 19, Mira street, Yekaterinburg, 620002
S. Kh. Estemirova
Russian Federation
Svetlana Kh. Estemirova
101, Amundsen street, Yekaterinburg, 620016
A. V. Kim
Russian Federation
Angelina V. Kim
101, Amundsen street, Yekaterinburg, 620016; 19, Mira street, Yekaterinburg, 620002
E. V. Sterkhov
Russian Federation
Evgenii V. Sterkhov
101, Amundsen street, Yekaterinburg, 620016
S. A. Petrova
Russian Federation
Sofia A. Petrova
101, Amundsen street, Yekaterinburg, 620016
G. A. Shilenko
Russian Federation
Galina A. Shilenko
19, Mira street, Yekaterinburg, 620002
References
1. Trevett A.F., Carter R.C. Targeting appropriate interventions to minimize deterioration of drinking-water quality in developing countries. J. Health Popul Nutr, 2008, 26(2), P. 125–138.
2. Danilov-Danilyan V.I. Global problem of fresh water deficit. Age of globalization, 2008, 1, P. 45–56. (in Russian)
3. Lee E.J., Schwab K.J. Deficiencies in drinking water distribution systems in developing countries. J. Water Health., 2005, 3(2), P. 109–127.
4. Tikhomirova E.I., Plotnikova O.A., Atamanova O.V., Istrashkina M.V., Koshelev A.V., Podolsky A.L. The use of multicomponent adsorption filters in water purification systems and luminescent control of ecotoxicant content. Theoretical and Applied Ecology, 2019, 1, P. 73–81.
5. Schwarzenbach R.P., Egli T., Hofstetter T.B., von Gunten U., Wehrli B. Global water pollution and human health. Annual Review of Environment and Resources, 2010, 35(1), P. 109–136.
6. Chaturvedi A.D., Pal D., Penta S., Kumar A. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World J. Microbiol. Biotechnol., 2015, 31(10), P. 1595–1603.
7. Kalyukova E.N., Ivanskaya N.N. Adsorption properties of some natural sorbents towards chromium (III) cations. Sorbtsionnye i Khromatograficheskie Protsessy, 2011, 11(4), P. 496–501. (in Russian)
8. Zhao Z.M., Wang Z.F., Cheng M.Y., Zhang Y.J. Effects of the combinations of 6 materials on the improvements in contaminant removals from surface water: purification mechanisms and adsorption kinetics. IOP Conf. Ser.: Earth Environ. Sci., 2019, 398(1), P. 012007.
9. Ambaye T.G., Vaccari M., van Hullebusch E.D., Amrane A., Rtimi S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int. J. Environ. Sci. Technol., 2021, 18(10), P. 3273–3294.
10. Huang Y.-C., Koseoglu S.S. Separation of heavy metals from industrial waste streams by membrane separation technology. Waste Management, 1993, 13(5–7), P. 481–501.
11. Chandrashekhar Nayak M., Isloor A.M., Inamuddin, Lakshmi B., Marwani H.M., Khan I. Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: Fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2+ from aqueous solutions. Arabian J. Chem., 2020, 13(3), P. 4661–4672.
12. Qdais H.A., Moussa H. Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 2004, 164(2), P. 105–110.
13. Pronina E.V., Akhmadullina F.Yu., Zakirov R.K., Pobedimskii D.G. Influence of the reagent pretreatment of wastewaters from chemical plants on the efficiency of their biological treatment. Russ. J. Appl. Chem., 2009, 82(1), P. 143–147.
14. Bolisetty S., Peydayesh M., Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis. Chem. Soc. Rev., 2019, 48(2), P. 463–487.
15. Smart N.G., Carleson T.E., Elshani S., Wang Sh., Wai Ch.M. Extraction of toxic heavy metals using supercritical fluid carbon dioxide containing organophosphorus reagents. Ind. Eng. Chem. Res., 1997, 36(5), P. 1819–1826.
16. SanPiN 2.1.4.1074-01. Potable water. Hygienic requirements for the water quality of centralized drinking water supply systems. Quality control (supersedes SanPiN 2.1.4.559-96). (in Russian)
17. Rojas G., Silva J., Flores J.A., Rodriguez A., Ly M., Maldonado H. Adsorption of chromium onto cross-linked chitosan. Separation and Purification Technology, 2005, 44(1), P. 31–36.
18. Recillas S., Col´on J., Casals E., Gonz´alez E., Puntes V., S´anchez A., Font X. Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. Journal of Hazardous Materials, 2010, 184(1–3), P. 425–431.
19. ´Alvarez-Ayuso E., Garc´ıa-S´anchez A., Querol X. Adsorption of Cr (VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide. Journal of Hazardous Materials, 2007, 142(1–2), P. 191–198.
20. El-Shahawi M.S., Al-Saidi H.M., Bashammakh A.S., Al-Sibaai A.A., Abdelfadeel M.A. Spectrofluorometric determination and chemical speciation of trace concentrations of chromium (III & VI) species in water using the ion pairing reagent tetraphenyl-phosphonium bromide. Talanta, 2011, 84(1), P. 175–179.
21. Khalturina T.I., Bobrik A.G., Churbakova O.V. Reagent treatment of chromium-containing wastewater. Proceedings of Irkutsk State Technical University, 2014, 6(89), P. 128–134. (in Russian)
22. Klimova O.V. Processes and apparatus design of wastewater treatment from chromium (VI) ions by carbon adsorbents: dis. – Ufa, 2016, 148 p. (in Russian)
23. Povarova L.V. Analysis of methods of oil-containing wastewater treatment. Science. Engineering. Technology (polytechnical bulletin), 2018, 1, P. 189–205. (in Russian)
24. Shaykimova A.K. New complex sorbents in the processes of additional treatment of chromium-containing wastewater. Proceedings of the “III Youth Environmental Forum”, Kemerovo, 06-08 October 2015, P. 84–84. (in Russian)
25. Nistratov A.V., Klushin V.N., Erofeeva V.B. Development of the process of chromium (VI) treatment of galvanic production wastewater by active carbon on a peat polymer basis. Uspekhi v Khimii i Khimicheskoi Tekhnologii, 2012, 26(10 (139)), P. 94–98. (in Russian)
26. Ecology. Reference book. Adsorbents alumogel, 2021 (https://ru-ecology.info/term/59686). (in Russian)
27. Frolova L., Kharytonov M., Klimkina I., Kovrov O., Koveria A. Adsorption purification of waste water from chromium by ferrite manganese. E3S Web of Conferences, 2020, 168, P. 00026.
28. Raouf M.E.A., Maysour N.E., Farag R.K., Abdul-Raheim A.R.M. Wastewater treatment methodologies, review article. International Journal of Environment & Agricultural Science, 2019, 3(1), P. 18.
29. Stroganova Yu.I., Nagornov R.S., Lepilova A.M., Razgovorov P.B. Study of the surface state of aluminosilicate material during treatment with organic acids and alkali. Proceedings of the X All-Russian Scientific and Practical Conference “Technologies and equipment for the chemical, biotechnological and food industries”, Biysk, 24-26 May 2017, P. 304–307. (in Russian)
30. Malkin P. Wastewater treatment from heavy metal ions using nanoactivated complexes of natural zeolite and diatomite. Nanotechnologies in Construction, 2018, 10(2), P. 21–41.
31. Keymirov M.A. Water purification of ions of heavy metals by montmorillonite modified with polyamine. Journal of Water Chemistry and Technology, 2018, 40(6), P. 320–326.
32. Bhattacharyya K.G., Sen Gupta S. Influence of acid activation of kaolinite and montmorillonite on adsorptive removal of Cd (II) from water. Ind. Eng. Chem. Res., 2007, 46(11), P. 3734–3742.
33. Xiaomin N., Xiaobo S., Huagui Z., Dongen Z., Dandan Y., Qingbiao Z. Studies on the one-step preparation of iron nanoparticles in solution. J. Cryst. Growth., 2005, 275(3–4), P. 548–553.
34. Shapovalova O.E., Drozdov A.S., Bryushkova E.A., Morozov M.I., Vinogradov V.V. Room-temperature fabrication of magnetite-boehmite sol-gel composites for heavy metal ions removal. Arabian J. Chem., 2020, 13(1), P. 1933–1944.
35. Reddy D.H.K., Yun Y.-S. Spinel ferrite magnetic adsorbents: Alternative future materials for water purification? Coord. Chem. Rev., 2016, 315, P. 90–111.
36. Li X., Sotto A., Li J., Van der Bruggen B. Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. Journal of Membrane Science, 2017, 524, P. 502–528.
37. Moges A., Nkambule T.T.I., Fito J. The application of GO-Fe3O4 nanocomposite for chromium adsorption from tannery industry wastewater. J. Environ. Manage., 2022, 305, P. 114369.
38. Rajput S., Pittman C.U.,Jr., Mohan D. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J. Colloid Interface Sci., 2016, 468, P. 334–346.
39. Zhou Z.H., Wang J., Liu X. Chan H.S.O. Synthesis of Fe3O4 nanoparticles from emulsions. J. Mater. Chem., 2001, 11(6), P. 1704–1709.
40. Iida H., Takayanagi K., Nakanishi T., Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J. Colloid Interface Sci., 2007, 314(1), P. 274–280.
41. Ahmadi S., Chia C.-H., Zakaria S., Saeedfar K., Asim N. Synthesis of Fe3O4 nanocrystals using hydrothermal approach. J. Magn. Magn. Mater., 2012, 324(24), P. 4147–4150.
42. Scoville A.N., Reiff W.M. Magnetic characterization of the linear chain polymer bis hydrazine ferrous chloride Fe(N2H4)2Cl2. Inorg. Chim. Acta, 1983, 68, P. 57–61.
43. Kumar N.R.S., Nethaji M., Patil K.C. Preparation, characterization, spectral and thermal analyses of (N2H5)2MCl4 • 2H2O (M = Fe, Co, Ni and Cu); crystal structure of the iron complex. Polyhedron, 1991, 10(3), P. 365–371.
44. Gates-Rector S., Blanton T. The Powder Diffraction File: A Quality Materials Characterization Database. Powder Diffr., 2019, 34(4), P. 352–360.
45. Coelho A.A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst., 2018, 51, P. 210–218.
46. Ordinartsev D.P., Pechishcheva N.V., Estemirova S.Kh., Kim A.V., Shunyaev K.Yu. Removal of Cr(VI) from wastewater by modified montmorillonite in combination with zero-valent iron. Hydrometallurgy, 2022, 208, P. 105813.
47. Qin G., McGuire M.J., Blute N.K., Seidel C., Fong L. Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: A pilot-scale study. Environ. Sci. Technol., 2005, 39(16), P. 6321–6327.
48. Gaunt H., Wetton E.A.M. The reaction between hydrazine and oxygen in water. J. Appl. Chem., 1966, 16(6), P. 171–176.
Review
For citations:
Ordinartsev D.P., Pechishcheva N.V., Estemirova S.Kh., Kim A.V., Sterkhov E.V., Petrova S.A., Shilenko G.A. Composite sorbent based on Fe3O4 with Fe(N2H4)xCly for the removal of Chromium(VI) from wastewater. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(4):510-519. https://doi.org/10.17586/2220-8054-2024-15-4-510-519