Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Композитный сорбент на основе Fe3O4 с оболочкой Fe(N2H4)xCly для удаления хрома (VI) из сточной воды

https://doi.org/10.17586/2220-8054-2024-15-4-510-519

Аннотация

В работе представлена методика синтеза комплекса железа с гидратом гидразина Fe(N2H4)xCly. Комплекс Fe(N2H4)xCly исследован методами рентгенофазового анализа и сканирующей электронной микроскопии. При гидролизе комплекс Fe(N2H4)xCly образует композитный сорбент, который представляет собой Fe3O4 в оболочке из комплекса Fe(N2H4)xCly. Композитный сорбент может быть использован для очистки сточной воды от ионов Cr(VI) и эффективен в диапазоне рН от 2 до 12. На основе полученных данных по адсорбции и электрокинетического потенциала сделан вывод о характере терминальных групп адсорбента, предложена схема строения его двойного электрического слоя и механизм адсорбции. В зависимости от условий Cr(VI) может адсорбироваться на композитном сорбенте или восстанавливаться до Cr(III). Эффективность композитного сорбента при удалении ионов Cr(VI) проверена на образце реальной сточной воды.

Об авторах

Д. П. Ординарцев
Institute of Metallurgy of the Ural Branch of the Russian Academy of Science
Россия


Н. В. Печищева
Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin
Россия


С. Х. Эстемирова
Institute of Metallurgy of the Ural Branch of the Russian Academy of Science
Россия


А. В. Ким
Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin
Россия


Е. В. Стерхов
Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
Россия


С. А. Петрова
Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences
Россия


Г. А. Шиленко
Ural Federal University named after the First President of Russia B. N. Yeltsin
Россия


Список литературы

1. Trevett A.F., Carter R.C. Targeting appropriate interventions to minimize deterioration of drinking-water quality in developing countries. J. Health Popul Nutr, 2008, 26(2), P. 125–138.

2. Danilov-Danilyan V.I. Global problem of fresh water deficit. Age of globalization, 2008, 1, P. 45–56. (in Russian)

3. Lee E.J., Schwab K.J. Deficiencies in drinking water distribution systems in developing countries. J. Water Health., 2005, 3(2), P. 109–127.

4. Tikhomirova E.I., Plotnikova O.A., Atamanova O.V., Istrashkina M.V., Koshelev A.V., Podolsky A.L. The use of multicomponent adsorption filters in water purification systems and luminescent control of ecotoxicant content. Theoretical and Applied Ecology, 2019, 1, P. 73–81.

5. Schwarzenbach R.P., Egli T., Hofstetter T.B., von Gunten U., Wehrli B. Global water pollution and human health. Annual Review of Environment and Resources, 2010, 35(1), P. 109–136.

6. Chaturvedi A.D., Pal D., Penta S., Kumar A. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World J. Microbiol. Biotechnol., 2015, 31(10), P. 1595–1603.

7. Kalyukova E.N., Ivanskaya N.N. Adsorption properties of some natural sorbents towards chromium (III) cations. Sorbtsionnye i Khromatograficheskie Protsessy, 2011, 11(4), P. 496–501. (in Russian)

8. Zhao Z.M., Wang Z.F., Cheng M.Y., Zhang Y.J. Effects of the combinations of 6 materials on the improvements in contaminant removals from surface water: purification mechanisms and adsorption kinetics. IOP Conf. Ser.: Earth Environ. Sci., 2019, 398(1), P. 012007.

9. Ambaye T.G., Vaccari M., van Hullebusch E.D., Amrane A., Rtimi S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int. J. Environ. Sci. Technol., 2021, 18(10), P. 3273–3294.

10. Huang Y.-C., Koseoglu S.S. Separation of heavy metals from industrial waste streams by membrane separation technology. Waste Management, 1993, 13(5–7), P. 481–501.

11. Chandrashekhar Nayak M., Isloor A.M., Inamuddin, Lakshmi B., Marwani H.M., Khan I. Polyphenylsulfone/multiwalled carbon nanotubes mixed ultrafiltration membranes: Fabrication, characterization and removal of heavy metals Pb2+, Hg2+, and Cd2+ from aqueous solutions. Arabian J. Chem., 2020, 13(3), P. 4661–4672.

12. Qdais H.A., Moussa H. Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 2004, 164(2), P. 105–110.

13. Pronina E.V., Akhmadullina F.Yu., Zakirov R.K., Pobedimskii D.G. Influence of the reagent pretreatment of wastewaters from chemical plants on the efficiency of their biological treatment. Russ. J. Appl. Chem., 2009, 82(1), P. 143–147.

14. Bolisetty S., Peydayesh M., Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis. Chem. Soc. Rev., 2019, 48(2), P. 463–487.

15. Smart N.G., Carleson T.E., Elshani S., Wang Sh., Wai Ch.M. Extraction of toxic heavy metals using supercritical fluid carbon dioxide containing organophosphorus reagents. Ind. Eng. Chem. Res., 1997, 36(5), P. 1819–1826.

16. SanPiN 2.1.4.1074-01. Potable water. Hygienic requirements for the water quality of centralized drinking water supply systems. Quality control (supersedes SanPiN 2.1.4.559-96). (in Russian)

17. Rojas G., Silva J., Flores J.A., Rodriguez A., Ly M., Maldonado H. Adsorption of chromium onto cross-linked chitosan. Separation and Purification Technology, 2005, 44(1), P. 31–36.

18. Recillas S., Col´on J., Casals E., Gonz´alez E., Puntes V., S´anchez A., Font X. Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. Journal of Hazardous Materials, 2010, 184(1–3), P. 425–431.

19. ´Alvarez-Ayuso E., Garc´ıa-S´anchez A., Querol X. Adsorption of Cr (VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide. Journal of Hazardous Materials, 2007, 142(1–2), P. 191–198.

20. El-Shahawi M.S., Al-Saidi H.M., Bashammakh A.S., Al-Sibaai A.A., Abdelfadeel M.A. Spectrofluorometric determination and chemical speciation of trace concentrations of chromium (III & VI) species in water using the ion pairing reagent tetraphenyl-phosphonium bromide. Talanta, 2011, 84(1), P. 175–179.

21. Khalturina T.I., Bobrik A.G., Churbakova O.V. Reagent treatment of chromium-containing wastewater. Proceedings of Irkutsk State Technical University, 2014, 6(89), P. 128–134. (in Russian)

22. Klimova O.V. Processes and apparatus design of wastewater treatment from chromium (VI) ions by carbon adsorbents: dis. – Ufa, 2016, 148 p. (in Russian)

23. Povarova L.V. Analysis of methods of oil-containing wastewater treatment. Science. Engineering. Technology (polytechnical bulletin), 2018, 1, P. 189–205. (in Russian)

24. Shaykimova A.K. New complex sorbents in the processes of additional treatment of chromium-containing wastewater. Proceedings of the “III Youth Environmental Forum”, Kemerovo, 06-08 October 2015, P. 84–84. (in Russian)

25. Nistratov A.V., Klushin V.N., Erofeeva V.B. Development of the process of chromium (VI) treatment of galvanic production wastewater by active carbon on a peat polymer basis. Uspekhi v Khimii i Khimicheskoi Tekhnologii, 2012, 26(10 (139)), P. 94–98. (in Russian)

26. Ecology. Reference book. Adsorbents alumogel, 2021 (https://ru-ecology.info/term/59686). (in Russian)

27. Frolova L., Kharytonov M., Klimkina I., Kovrov O., Koveria A. Adsorption purification of waste water from chromium by ferrite manganese. E3S Web of Conferences, 2020, 168, P. 00026.

28. Raouf M.E.A., Maysour N.E., Farag R.K., Abdul-Raheim A.R.M. Wastewater treatment methodologies, review article. International Journal of Environment & Agricultural Science, 2019, 3(1), P. 18.

29. Stroganova Yu.I., Nagornov R.S., Lepilova A.M., Razgovorov P.B. Study of the surface state of aluminosilicate material during treatment with organic acids and alkali. Proceedings of the X All-Russian Scientific and Practical Conference “Technologies and equipment for the chemical, biotechnological and food industries”, Biysk, 24-26 May 2017, P. 304–307. (in Russian)

30. Malkin P. Wastewater treatment from heavy metal ions using nanoactivated complexes of natural zeolite and diatomite. Nanotechnologies in Construction, 2018, 10(2), P. 21–41.

31. Keymirov M.A. Water purification of ions of heavy metals by montmorillonite modified with polyamine. Journal of Water Chemistry and Technology, 2018, 40(6), P. 320–326.

32. Bhattacharyya K.G., Sen Gupta S. Influence of acid activation of kaolinite and montmorillonite on adsorptive removal of Cd (II) from water. Ind. Eng. Chem. Res., 2007, 46(11), P. 3734–3742.

33. Xiaomin N., Xiaobo S., Huagui Z., Dongen Z., Dandan Y., Qingbiao Z. Studies on the one-step preparation of iron nanoparticles in solution. J. Cryst. Growth., 2005, 275(3–4), P. 548–553.

34. Shapovalova O.E., Drozdov A.S., Bryushkova E.A., Morozov M.I., Vinogradov V.V. Room-temperature fabrication of magnetite-boehmite sol-gel composites for heavy metal ions removal. Arabian J. Chem., 2020, 13(1), P. 1933–1944.

35. Reddy D.H.K., Yun Y.-S. Spinel ferrite magnetic adsorbents: Alternative future materials for water purification? Coord. Chem. Rev., 2016, 315, P. 90–111.

36. Li X., Sotto A., Li J., Van der Bruggen B. Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles. Journal of Membrane Science, 2017, 524, P. 502–528.

37. Moges A., Nkambule T.T.I., Fito J. The application of GO-Fe3O4 nanocomposite for chromium adsorption from tannery industry wastewater. J. Environ. Manage., 2022, 305, P. 114369.

38. Rajput S., Pittman C.U.,Jr., Mohan D. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J. Colloid Interface Sci., 2016, 468, P. 334–346.

39. Zhou Z.H., Wang J., Liu X. Chan H.S.O. Synthesis of Fe3O4 nanoparticles from emulsions. J. Mater. Chem., 2001, 11(6), P. 1704–1709.

40. Iida H., Takayanagi K., Nakanishi T., Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J. Colloid Interface Sci., 2007, 314(1), P. 274–280.

41. Ahmadi S., Chia C.-H., Zakaria S., Saeedfar K., Asim N. Synthesis of Fe3O4 nanocrystals using hydrothermal approach. J. Magn. Magn. Mater., 2012, 324(24), P. 4147–4150.

42. Scoville A.N., Reiff W.M. Magnetic characterization of the linear chain polymer bis hydrazine ferrous chloride Fe(N2H4)2Cl2. Inorg. Chim. Acta, 1983, 68, P. 57–61.

43. Kumar N.R.S., Nethaji M., Patil K.C. Preparation, characterization, spectral and thermal analyses of (N2H5)2MCl4 • 2H2O (M = Fe, Co, Ni and Cu); crystal structure of the iron complex. Polyhedron, 1991, 10(3), P. 365–371.

44. Gates-Rector S., Blanton T. The Powder Diffraction File: A Quality Materials Characterization Database. Powder Diffr., 2019, 34(4), P. 352–360.

45. Coelho A.A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst., 2018, 51, P. 210–218.

46. Ordinartsev D.P., Pechishcheva N.V., Estemirova S.Kh., Kim A.V., Shunyaev K.Yu. Removal of Cr(VI) from wastewater by modified montmorillonite in combination with zero-valent iron. Hydrometallurgy, 2022, 208, P. 105813.

47. Qin G., McGuire M.J., Blute N.K., Seidel C., Fong L. Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: A pilot-scale study. Environ. Sci. Technol., 2005, 39(16), P. 6321–6327.

48. Gaunt H., Wetton E.A.M. The reaction between hydrazine and oxygen in water. J. Appl. Chem., 1966, 16(6), P. 171–176.


Рецензия

Для цитирования:


Ординарцев Д.П., Печищева Н.В., Эстемирова С.Х., Ким А.В., Стерхов Е.В., Петрова С.А., Шиленко Г.А. Композитный сорбент на основе Fe3O4 с оболочкой Fe(N2H4)xCly для удаления хрома (VI) из сточной воды. Наносистемы: физика, химия, математика. 2024;15(4):510-519. https://doi.org/10.17586/2220-8054-2024-15-4-510-519

For citation:


Ordinartsev D.P., Pechishcheva N.V., Estemirova S.Kh., Kim A.V., Sterkhov E.V., Petrova S.A., Shilenko G.A. Composite sorbent based on Fe3O4 with Fe(N2H4)xCly for the removal of Chromium(VI) from wastewater. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(4):510-519. https://doi.org/10.17586/2220-8054-2024-15-4-510-519

Просмотров: 4


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)