Phase formation of nanosized InGaZnO4 obtained by the sol-gel method with different chelating agents.
https://doi.org/10.17586/2220-8054-2024-15-4-520-529
Abstract
The production of nano-sized semiconductor oxide materials, such as indium-gallium-zinc oxide (IGZO), will make it possible to use it for the transistors manufacture using printing methods. The sol-gel method is one of the widely known and used methods for producing nano-sized oxide materials. As is known, a chelating reagent (complexing agent) can influence both the synthesis process and the final phase composition. The results of sol-gel synthesis with various chelating reagents: citric acid, ethylene glycol, oxalic acid, urea, glycerol and sucrose are presented. The samples were studied by X-ray diffraction. It was found that ethylene glycol and glycerol as chelating reagents make it possible to obtain a homogeneous crystalline material at 900 ◦C with a YbFe2O4-type structure, R-3m (166) space group. Unit cell parameters and crystallite size (Halder-Wagner method) for InGaZnO4 single-phase samples were calculated
Keywords
About the Authors
G. M. ZirnikRussian Federation
Gleb M. Zirnik Laboratory of Semiconductor Oxide Materials
Institutsklane, 9, Dolgoprudny, 141701
Institute of Chemistry
Universitetskaya emb., 7–9, 199034
A. S. Chernukha
Russian Federation
Alexander S. Chernukha Laboratory of Semiconductor Oxide Materials
Institutsky lane, 9, Dolgoprudny, 141701
Institute of Chemistry
Universitetskaya emb., 7–9, 199034
D. A. Uchaev
Russian Federation
Daniil A. Uchaev Scientific and Educational Center “Nanotechnologies”
Lenin Av., 76, Chelyabinsk, 454080
I. A. Solizoda
Russian Federation
Ibrohimi A. Solizoda Laboratory of Semiconductor Oxide Materials
Institutsky lane, 9, Dolgoprudny, 141701
Institute of Chemistry
Universitetskayemb., 7–9, 199034
Rudaki Av., 17, Dushanbe, 734025
S. A. Gudkova
Russian Federation
Svetlana A. Gudkova Laboratory of Semiconductor Oxide Materials
Institutsky lane, 9, Dolgoprudny, 141701
N. S. Nekorysnova
Russian Federation
Nadezhda S. Nekorysnova Scientific and Educational Center “Nanotechnologies”
Lenin Av., 76, Chelyabinsk, 454080
D. A. Vinnik
Russian Federation
Denis A. Vinnik Laboratory of Semiconductor Oxide Materials
Institutsky lane, 9, Dolgoprudny, 141701
Institute of Chemistry
Universitetskaya emb., 7–9, 199034
Scientific and Educational Center “Nanotechnologies”
Lenin Av., 76, Chelyabinsk, 454080
References
1. Kim G.H., Kim H.S., Shin H.S., Ahn B.D., Kim K.H., Kim H.J. Inkjet-printed InGaZnO thin film transistor. Thin Solid Films, 2009, 517 (14), P. 4007–4010.
2. Wang Y., Sun X.W., Goh G.K.L., Demir H.V., Yu H.Y. Influence of Channel Layer Thickness on the Electrical Performances of Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors. IEEE Trans. Electron Devices, 2011, 58 (2), P. 480–485.
3. Lee Y.G., Choi W.-S. Electrohydrodynamic Jet-Printed Zinc-Tin Oxide TFTs and Their Bias Stability. ACS Appl. Mater. Interfaces, 2014, 6 (14), P. 11167–11172.
4. Jeong S., Lee J-Y., Lee S.S., Oh S-W., Lee H.H., Seo Y.-H., Ryu B.-H., Choi Y. Chemically improved high performance printed indium gallium zinc oxide thin-film transistors. J. Mater. Chem., 2011, 21 (43), P. 17066–17070.
5. Fukuda N., Watanabe Y., Uemura S., Yoshida Y., Nakamura T., Ushijima H. In-Ga-Zn oxide nanoparticles acting as an oxide semiconductor material synthesized via a coprecipitation-based method. J. Mater. Chem. C, 2014, 2 (13), P. 2448–2454.
6. Pechini M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. US Patent 3330697, 1967.
7. Chernukha A.S., Zvereva A.A., Zirnik G.M., Pashnin D.R., Mustafina K.E., Belyaev I.E., Dyukova O.V., Artyukova M.V., Malev E.V., Zhivulin V.E., Mosunova T.V., Vinnik D.A. Synthesis of Barium Hexaferrite by the Self-combustion Method. Bull. South Ural State Univ. Ser. “Chemistry”, 2021, 13 (3), P. 40–48.
8. Kumar R., Kumar H., Singh R.R., Barman P.B. Variation in magnetic and structural properties of Co-doped Ni-Zn ferrite nanoparticles: a different aspect. J. Sol-Gel Sci. Technol., 2016, 78 (3), P. 566–575.
9. Bhagwat V.R., Humbe A.V., More S.D., Jadhav K.M. Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: Different fuels approach. Mater. Sci. Eng. B, 2019, 248, 114388.
10. Khort A., Hedberg J., Mei N., Romanovski V., Blomberg E., Odnevall I. Corrosion and transformation of solution combustion synthesized Co, Ni and CoNi nanoparticles in synthetic freshwater with and without natural organic matter. Sci. Rep., 2021, 11 (1), 7860.
11. Oladoja N.A., Anthony E.T., Ololade I.A., Saliu T.D., Bello G.A. Self-propagation combustion method for the synthesis of solar active Nano Ferrite for Cr(VI) reduction in aqua system. J. Photochem. Photobiol. A Chem., 2018, 353, P. 229–239.
12. Yadav R.S., Kuˇritka I., Vilcakova J., Machovsky M., Skoda D., Urb´anek P., Masaˇr M., Jurˇca M., Urb´anek M., Kalina L., Havlica J. NiFe2O4 Nanoparticles Synthesized by Dextrin from Corn-Mediated Sol-Gel Combustion Method and Its Polypropylene Nanocomposites Engineered with Reduced Graphene Oxide for the Reduction of Electromagnetic Pollution. ACS Omega, 2019, 4 (26), P. 22069–22081.
13. Wahba M.A., Yakout S.M., Youssef A.M., Sharmoukh W., Elsayed A.M., Khalil M.Sh. Chelating Agents Assisted Rapid Synthesis of High Purity BiFeO3: Remarkable Optical, Electrical, and Magnetic Characteristics. J. Supercond. Nov. Magn., 2022, 35 (12), P. 3689–3704.
14. Katelnikovas A., Barkauskas J., Ivanauskas F., Beganskiene A., Kareiva A. Aqueous sol-gel synthesis route for the preparation of YAG: Evaluation of sol-gel process by mathematical regression model. J. Sol-Gel Sci. Technol., 2007, 41, P. 193–201.
15. Yu L., Sun A. Influence of different complexing agents on structural, morphological, and magnetic properties of Mg-Co ferrites synthesized by sol-gel auto-combustion method. J. Mater. Sci. Mater. Electron., 2021, 32 (8), P. 10549–10563.
16. Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr., 2011, 44 (6), P. 1272–1276.
17. Kimizuka N., Mohri T. Spinel, YbFe2O4, and Yb2Fe3O7 types of structures for compounds in the In2O3 and Sc2O3–A2O3–BO systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at temperatures over 1000 ◦C. J. Solid State Chem., 1985, 60 (3), P. 382–384.
18. Nespolo M., Sato A., Osawa T., Ohashi H. Synthesis, crystal structure and charge distribution of InGaZnO4. X-ray diffraction study of 20 kb single crystal and 50 kb twin by reticular merohedry. Cryst. Res. Technol. 2000, 35(2), P. 151–165.
19. Xu C., Jiang P., Cong R., Yang T. Structure investigation of InGaZn1−xCuxO4 (x = 0–1) and magnetic property of InGaCuO4. J. Solid State Chem., 2019, 274, P. 303–307.
20. Mohamed S.H. Transparent conductive gallium-doped indium oxide nanowires for optoelectronic applications. J. Korean Phys. Soc., 2013, 62 (6), P. 902–905.
21. Yang J., Sun X., Yang W., Zhu M., Shi J. The Improvement of Coralline-Like ZnGa2O4 by Cocatalysts for the Photocatalytic Degradation of Rhodamine B. Catalysts, 2020, 10 (2), 221.
22. Zhivulin V.E., Trofimov E.A., Zaitseva O.V., Sherstyuk D.P., Cherkasova N.A., Taskaev S.V., Vinnik D.A., Alekhina Y.A., Perov N.S., Naidu K.C.B., Elsaeedy H.I., Khandaker M.U., Tishkevich D.I., Zubar T.I., Trukhanov A.V., Trukhanov S.V. Preparation, phase stability, and magnetization behavior of high entropy hexaferrites. iScience, 2023, 26 (7), 107077.
23. Vinnik D.A., Sherstyuk D.P., Zhivulin V.E., Zhivulin D.E., Starikov A.Yu., Gudkova S.A., Zherebtsov D.A., Pankratov D.A., Alekhina Yu.A., Perov N.S., Trukhanov S.V., Trukhanova E.L., Trukhanov A.V. Impact of the Zn–Co content on structural and magnetic characteristics of the Ni spinel ferrites. Ceram. Int., 2022, 48 (13), P. 18124–18133.
24. Nath D., Singh F., Das R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles – a comparative study. Mater. Chem. Phys., 2020, 239, 122021.
Review
For citations:
Zirnik G.M., Chernukha A.S., Uchaev D.A., Solizoda I.A., Gudkova S.A., Nekorysnova N.S., Vinnik D.A. Phase formation of nanosized InGaZnO4 obtained by the sol-gel method with different chelating agents. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(4):520-529. https://doi.org/10.17586/2220-8054-2024-15-4-520-529