Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Молекулярно-динамическое изучение вязкости наножидкостей с углеродными трубками

https://doi.org/10.17586/2220-8054-2024-15-1-37-45

Аннотация

Целью данной работы является молекулярно-динамическое моделирование вязкости наножидкостей на основе бензола с углеродными нанотрубками и наночастицами из углерода и меди. Диаметр и длина нанотрубок соответственно равны 1,1 нм и 1.1, 3.5, 7.2, 14.6 нм. Размер сферических наночастиц составлял 1.39, 2.5 и 3.2 нм. Вязкость рассчитывалась с использованием флуктуационно-диссипационной теоремы (формула Грина-Кубо). Показано, что коэффициент вязкости всех исследованных наножидкостей с углеродными нанотрубками увеличивается с увеличением их концентрации и длины. Это увеличение значительно выше, чем предсказывается соответствующими теориями для крупнодисперсных жидкостей. При заданных массовых концентрациях коэффициент вязкости наножидкостей с углеродными нанотрубками выше, чем у наножидкостей со сферическими частицами. Увеличение вязкости наножидкостей по сравнению с вязкостью базовой жидкости объясняется структурированием молекул базовой жидкости вблизи наночастиц или УНТ.

Об авторах

В. Я. Рудяк
Novosibirsk State University of Architecture and Civil Engineering
Россия


С. Л. Краснолуцкий
Novosibirsk State University of Architecture and Civil Engineering
Россия


Е. В. Лежнев
Novosibirsk State University of Architecture and Civil Engineering
Россия


Список литературы

1. Murshed S.M.S., de Castro C.A.N. Nanofluids: synthesis, properties and applications. Nova Science Publishers, New York, 2014, 296 p.

2. Li J., Zhang X., Xu B., Yuan V. Nanofluid research and applications: A review. Int. Communications Heat and Mass Transfer, 2021, 127, 105543.

3. Yaqoob S.B., Adnan R., Rameez Khan R.M., Rashid M. Gold, silver, and palladium nanoparticles: A chemical tool for biomedical applications. Front. Chem., 2020, 8, P. 376–392.

4. Rubbi F., Das L., Habib K., Aslfattahi N., Saidur R., Ul Alam S. A comprehensive review on advances of oil-based nanofluids for concentrating solar thermal collector application. J. Mol. Liq., 2021, 338, 116771.

5. Hajiabadi S.H., Aghaei H., Kalateh-Aghamohammadi M., Shorgasthi M. An overview on the significance of carbon-based nanomaterials in upstream oil and gas industry. J. Petrol. Sci. & Eng., 2020, 186, 106783.

6. Zhao J., Huang Y., He Y., Shi Y. Nanolubricant additives: A review. Friction, 2021, 9 (5), P. 891–917.

7. Pordanjani A.H., Aghakhani S., Afrand M., Mahmoudi B., Mahian O., Wongwise S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers. Manag., 2019, 198, 111886.

8. Rudyak V.Ya. Thermophysical characteristics of nano?uids and transport process mechanisms. J. Nanofluids, 2019, 8, P. 1–16.

9. Minakov A.V., Rudyak V.Ya., Pryazhnikov M.I. Systematic experimental study of the viscosity of nanofluids. Heat Transfer Eng., 2021, 42 (12), P. 1024–1040.

10. Patra A.K., Nayak M.K., Misra A. Viscosity of nanofluids-A Review. Int. J. Thermofluid Sci. and Technology, 2020, 7 (2), 070202.

11. Said Z., Sundar L.S., Tiwari A.K., Ali H., Sheikholeslami M., Bellos E., Babar H. Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys. Reports, 2022, 946, P. 1–94.

12. Koca H.D., Doganay S., Turgut A., Tavman I.H., Saidur R., Mahbubul I.M. Effect of particle size on the viscosity of nanofluids: A review. Renewable and Sustainable Energy Rev., 2018, 82, P. 1664–1674.

13. Namburu P.K., Kulkarni D.P., Dandekar A., Das D.K. Experimental investigation of viscosity and specific heat and silicon dioxide nanofluids. Micro & Nano Lett., 2007, 2 (3), P. 67–71.

14. Nguyen C.T., Desgranges F., Galanis N., Roy G., Mare´ T., Boucher S., Angue Mintsa H. Viscosity data for Al2O3–water nanofluid – hysteresis: is heat transfer enhancement using nanofluids reliable? Int. J. Thermal Sci., 2008, 47 (2), P. 103–111.

15. Chen H., Ding Y., Tan C. Rheological behavior of nanofluids. New J. Phys., 2007, 9 (10), 367.

16. Rudyak V.Ya., Dimov S.V., Kuznetsov V.V. On the dependence of the viscosity coefficient of nanofluids on particle size and temperature. Tech. Phys. Lett., 2013, 39 (9), P. 779–782.

17. Rudyak V.Ya., Krasnolutskii S.L. Dependence of the viscosity of nano?uids on nanoparticle size and material. Phys. Lett. A, 2014, 378, P. 1845–1849.

18. Rudyak V.Ya., Krasnolutskii S.L. Simulation of the nanofluid viscosity coefficient by the molecular dynamics method. Tech. Phys., 2015, 60 (6), P. 798–804.

19. Rudyak V.Ya., Minakov A.V., Smetanina M.S., Pryazhnikov M.I. Experimental data on the dependence of the viscosity of water– and ethylene glycol–based nanofluids on the size and material of particles. Dokl. Phys., 2016, 61 (3), P. 152–154.

20. Rudyak V.Ya., Belkin A.A., Krasnolutskii S.L. Molecular dynamics modeling transport processes of fluids and nanofluids in bulk and nanochannels. In: S. Ko¨hler, editor, Advances in Molecular Dynamics Simulations Research. Nova science publisher, New York, 2021, P. 1–86.

21. Jabbari F., Rajabpour A., Saedodin S. Thermal conductivity and viscosity of nanofluids: A review of recent molecular dynamics studies. Chem. Eng. Sc., 2017, 174, P. 67–81.

22. Rudyak V.Ya., Belkin A.A. On the effect of nanoparticles on fluid structure. Colloid J., 2019, 81 (4), P. 487–490.

23. Rudyak V.Ya., Dashapilov G.R., Minakov A.V., Pryazhnikov M.I. Comparative characteristics of viscosity and rheology of nanofluids with multiwalled and single-walled carbon nanotubes. Diamond & Related Mat., 2023, 132, 109616.

24. Jabbari F., Saedodin S., Rajabpour A. Experimental investigation and molecular dynamics simulations of viscosity of CNT-water nanofluid at different temperatures and volume fractions of nanoparticles. J. Chem. Eng. Data, 2018, 64 (1), P. 262–272.

25. Jabbari F., Rajabpour A., Saedodin S. Viscosity of carbon nanotube/water nanofluid. J. Therm. Anal. Calorim., 2019, 135, P. 1787–1796.

26. Einstein A. Eine neue Bestimmung der Molekueldimensionen. Ann. Phys., 1906, 19, P. 289–306.

27. Brinkman H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys., 1952, 20, P. 571.

28. Batchelor G.K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid. Mech., 1977, 83, P. 97–117.

29. Razmara N., Namarvari H., Meneghini J.R. A new correlation for viscosity of model water-carbon nanotube nanofluids: Molecular dynamics simulation. J. Mol. Liq., 2019, 293, 111438.

30. Namarvari H., Razmara N., Miranda C.R., Hashemi M.Y. Effect of SWCNT volume fraction on the viscosity of water based nanofluids. J. Mol. Model., 2021, 27, P. 253.

31. Rapaport D.C. The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge, 2004, 564 p.

32. Thompson A.P., et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm., 2022, 271, 108171.

33. Zubarev D.N. Nonequilibrium statistical thermodynamics. Consultants Bureau, New York, 1974, 243 p.

34. Allen M.P., Tildesley D.J. Computer Simulation of Liquids. Oxford University Press, Oxford, 1987, 385 p.

35. Rudyak V.Ya. Fluctuation-dissipation theorems and transport coefficients of the gases, liquids and nanofluids. J. Phys.: Conf. Ser., 2020, 1560, 012002.

36. Nose´ S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys., 1984, 81, P. 511–519.

37. Hoover W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 1985, 31 (3), P. 1695–1697.

38. Hirschfelder J.O., Curtiss C.F., Bird R.B. Molecular theory of gases and liquids. Revised Edition. Wiley-Interscience, New York, 1964, 1280 p.

39. Stuart S.J., Tutein A.B., Harrison J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys., 2000, 112, P. 6472– 6486.

40. Rudyak V.Ya., Krasnolutskii S.L. The interaction potential of dispersed particles with carrier gas molecules. In: Proceedings of the 21st international symposium on Rarefied Gas Dynamics. Cepadues-Editions, Toulouse, 1999, 1, P. 263–270.

41. Rudyak V.Ya., Krasnolutskii S.L. Diffusion of nanoparticles in a rarefied gas. Tech. Phys., 2002, 47, P. 807–813.

42. Rudyak V.Ya., Krasnolutskii S.L., Ivanov D.A. The interaction potential of nanoparticles. Dokl. Phys., 2012, 57, P. 33–35.

43. Rudyak V.Ya., Krasnolutskii S.L., Nasibulin A.G., Kauppinen E.I. Methods of measuring the diffusion coefficient and sizes of nanoparticles in rarefied gas. Dokl. Phys., 2002, 47, P. 758–761.

44. Norman G.E., Stegailov V.V. Stochastic and dynamic properties of molecular dynamics systems: simple liquids, plasma and electrolytes, polymers. Comput. Phys. Commun., 2002, 147 (4), P. 678–683.

45. Norman G.E., Stegailov V.V. Stochastic theory of the classical molecular dynamics method. Math. Models Comput. Simul., 2013, 5 (4), P. 305–333.

46. Rudyak V.Ya. Statistical aerohydromechanics of homogeneous and heterogeneous media. Vol. 2, Hydromechanics. NSUACE, Novosibirsk, 2005, 469 p.

47. Lide D.R., ed. Handbook of chemistry and physics. 90th edition. CRC, 2010, 2760 p.

48. Jeffery G.B. The motion of ellipsoidal particles immersed a viscous fluid. Proc. R. Soc. London A, 1922, 102, P. 161–179.

49. Pokrovskii V. Stresses, viscosity, and optical anisotropy of a moving suspension of rigid ellipsoids. Sov. Phys. Usp., 1972, 14, P. 737–746.

50. Sajid M.U., Ali H.M. Thermal conductivity of hybrid nanofluids: A critical review. Int. J. Heat and Mass Transfer A, 2018, 126, P. 211–234.

51. Yasmin H., Giwa S.O., Noor S., Sharifpur M. Experimental exploration of hybrid nanofluids as energy-efficient fluids in solar and thermal energy storage application. Nanomaterials, 2023, 13 (2), 278.


Рецензия

Для цитирования:


Рудяк В.Я., Краснолуцкий С.Л., Лежнев Е.В. Молекулярно-динамическое изучение вязкости наножидкостей с углеродными трубками. Наносистемы: физика, химия, математика. 2024;15(1):37-45. https://doi.org/10.17586/2220-8054-2024-15-1-37-45

For citation:


Rudyak V.Ya., Krasnolutskii S.L., Lezhnev E.V. Molecular dynamics study of nanofluids viscosity with carbon tubes. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(1):37-45. https://doi.org/10.17586/2220-8054-2024-15-1-37-45

Просмотров: 4


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)