Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Features of surface Bessel plasmon-polaritons in optical anisotropic hyperbolic metamaterials

https://doi.org/10.17586/2220-8054-2024-15-1-46-54

Abstract

The features of generation and properties of surface Bessel Plasmon-polaritons (SBPPs) in optical anisotropic hyperbolic metamaterials formed by a periodic lattice of metal nanowires made of gold and silver embedded into pores of aluminum oxide is studied. We investigate the influence of the thickness of the porous material matrix on the generated plasmon-polaritons. Calculation of energy flows in the structure is made.

About the Authors

Nguyen Van Vinh
Ho Chi Minh City University of Economics and Finance
Viet Nam

Nguyen Van Vinh

Ho Chi Minh City



Nguyen Pham Quynh Anh
Ho Chi Minh City University of Economics and Finance; University of Sciences
Viet Nam

Nguyen Pham Quynh Anh - Faculty of Electrical, Electronics and Materials Technology.

Hue 530000



References

1. Gaponenko S.V. Introduction to Nanophotonics. Cambridge, Cambridge University Press, 2010, 458 p.

2. Maier S.A. Plasmonics Theory and Applications. Moscow, Research Center “Regular and Chaotic Dynamics”, 2011, 292 p. (in Russian)

3. Libeson M.N. Surface electromagnetic waves in the optical range. Soros Educational J., 1996, 10, P. 92–98. (in Russian)

4. Agranovich V.M., Mills D.L. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces. Amsterdam: North-Holland, 1982, 734 p.

5. Reather H. Surface plasmon on Smooth and Rough Surfaces and on Gratings. Berlin, Springer-Verlag, 1988, 140 p.

6. Boardman A.D. Electromagnetic Surface Modes. New York, John Wiley & Sons, 1982, 786 p.

7. Klimov V.V. Nanoplasmonics. Fizmatlit, Moscow, 2009, 480 p. (in Russian)

8. Klyuchnik A.V., Kurganov S.Yu., Lozovik Yu.E. Plasma optics of nanostructures. Physics of the Solid State, 2003, 45 (7), P. 1327–1331.

9. Ebbesen T.W., et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391, P. 667–669.

10. Ozbay E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science, 2006, 311, P. 189–193.

11. Krasavin V., Zheludev N.I. Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. Applied Physics Letters, 2004, 84, P. 1416–1419.

12. Bozhevolnyi S.I. Plasmonics Nanoguides and Circuits. Singapore, Pan Stanford Publishing, 2008, 449 p.

13. Maier S.A., et al. Experimental demonstration of fiberaccessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Applied Physics Letters, 2005, 86 (7), 071103.

14. Rayleigh L. The Theory of Sound. New York, Dover, 1954, 507 p.

15. Ritchie R. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106, P. 874–881.

16. Powell C., Swan J. Origin of the characteristic electron energy losses in aluminum. Physical Review, 1959, 115, P. 869–875.

17. Liu Y., Zhang X. Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 2011, 40 (5), P. 2494–2507.

18. Kshetrimayum R.S. A brief Intro to Metamaterials. IEEE Potentials, 2004, 23 (5), P. 44–46.

19. Soukoulis C.M. Photonic Band Gap Materials. Dordrecht: Springer Netherlands, 1996, 744 p.

20. Poddubny A.N., et al. Hyperbolic metamaterials. Nature Photonics, 2013, 7, P. 958–967.

21. Jacob Z., Alekseyev L.V., Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit. Optics Express, 2006, 14, P. 8247–8256.

22. Lu D., Liu Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nature Communications, 2012, 3, 1205.

23. Poddubny A.N., et al. Microscopic model of Purcell enhancement in hyperbolic metamaterials. Physical Review B, 2012, 86, 035148.

24. Kurilkina S.N., Belyi V.N., Kazak N.S. Features of evanescent Bessel light beams formed in structures containing a dielectric layer. Optics Communications, 2010, 283, P. 3860–3868.

25. Goncharenko A.M., Khilo N.A., Petrova E.S. Evanescent Bessel light. Proceedings of SPIE – The Int. Society for Optical Engineering, 2001, 4517, P. 95–99.

26. Zhan Q. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. Optics Letters, 2006, 31, P. 1726–1728.

27. Jiefeng X., Quing L., Jia W. Numerical simulation of evanescent Bessel beams and apodization of evanescent field in near-field optical virtual probe. Proceedings of the SPIE, 2005, 5635, P. 42–47.

28. Novitsky A.V., Barkovsky L.M. Total internal reflection of vector Bessel beams: Imbert–Fedorov shift and intensity transformation. J. of Optics A Pure and Applied Optics, 2008, 10, 075006.

29. Al-Muhanna M.K., et al. Energy flow patterns in an optical field formed by a superposition of evanescent Bessel light beams. J. of Optics, 2011, 13 (10), 105703.

30. Cai W., Shalaev V.M. Optical Metamaterials – Fundamentals and Applications. Springer, Berlin, 2010.


Review

For citations:


Vinh N., Quynh Anh N. Features of surface Bessel plasmon-polaritons in optical anisotropic hyperbolic metamaterials. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(1):46-54. https://doi.org/10.17586/2220-8054-2024-15-1-46-54

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)