Особенности поверхностных бесселевых плазмон-поляритонов в оптически анизотропных гиперболических метаматериалах
https://doi.org/10.17586/2220-8054-2024-15-1-46-54
Аннотация
Исследованы особенности генерации и свойств поверхностных бесселевых плазмон-поляритонов (ПБПП) в оптически анизотропных гиперболических метаматериалах, образованных периодической решеткой металлических нанопроволок из золота и серебра, внедренных в поры оксида алюминия. Исследование влияния толщины матрицы пористого материала на генерируемые плазмон-поляритоны. Проведен расчет энергетических потоков в конструкции.
Об авторах
Нгуен Ван ВиньВьетнам
Нгуен Фам Куинь Ань
Вьетнам
Список литературы
1. Gaponenko S.V. Introduction to Nanophotonics. Cambridge, Cambridge University Press, 2010, 458 p.
2. Maier S.A. Plasmonics Theory and Applications. Moscow, Research Center “Regular and Chaotic Dynamics”, 2011, 292 p. (in Russian)
3. Libeson M.N. Surface electromagnetic waves in the optical range. Soros Educational J., 1996, 10, P. 92–98. (in Russian)
4. Agranovich V.M., Mills D.L. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces. Amsterdam: North-Holland, 1982, 734 p.
5. Reather H. Surface plasmon on Smooth and Rough Surfaces and on Gratings. Berlin, Springer-Verlag, 1988, 140 p.
6. Boardman A.D. Electromagnetic Surface Modes. New York, John Wiley & Sons, 1982, 786 p.
7. Klimov V.V. Nanoplasmonics. Fizmatlit, Moscow, 2009, 480 p. (in Russian)
8. Klyuchnik A.V., Kurganov S.Yu., Lozovik Yu.E. Plasma optics of nanostructures. Physics of the Solid State, 2003, 45 (7), P. 1327–1331.
9. Ebbesen T.W., et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391, P. 667–669.
10. Ozbay E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science, 2006, 311, P. 189–193.
11. Krasavin V., Zheludev N.I. Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. Applied Physics Letters, 2004, 84, P. 1416–1419.
12. Bozhevolnyi S.I. Plasmonics Nanoguides and Circuits. Singapore, Pan Stanford Publishing, 2008, 449 p.
13. Maier S.A., et al. Experimental demonstration of fiberaccessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Applied Physics Letters, 2005, 86 (7), 071103.
14. Rayleigh L. The Theory of Sound. New York, Dover, 1954, 507 p.
15. Ritchie R. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106, P. 874–881.
16. Powell C., Swan J. Origin of the characteristic electron energy losses in aluminum. Physical Review, 1959, 115, P. 869–875.
17. Liu Y., Zhang X. Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 2011, 40 (5), P. 2494–2507.
18. Kshetrimayum R.S. A brief Intro to Metamaterials. IEEE Potentials, 2004, 23 (5), P. 44–46.
19. Soukoulis C.M. Photonic Band Gap Materials. Dordrecht: Springer Netherlands, 1996, 744 p.
20. Poddubny A.N., et al. Hyperbolic metamaterials. Nature Photonics, 2013, 7, P. 958–967.
21. Jacob Z., Alekseyev L.V., Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit. Optics Express, 2006, 14, P. 8247–8256.
22. Lu D., Liu Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nature Communications, 2012, 3, 1205.
23. Poddubny A.N., et al. Microscopic model of Purcell enhancement in hyperbolic metamaterials. Physical Review B, 2012, 86, 035148.
24. Kurilkina S.N., Belyi V.N., Kazak N.S. Features of evanescent Bessel light beams formed in structures containing a dielectric layer. Optics Communications, 2010, 283, P. 3860–3868.
25. Goncharenko A.M., Khilo N.A., Petrova E.S. Evanescent Bessel light. Proceedings of SPIE – The Int. Society for Optical Engineering, 2001, 4517, P. 95–99.
26. Zhan Q. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. Optics Letters, 2006, 31, P. 1726–1728.
27. Jiefeng X., Quing L., Jia W. Numerical simulation of evanescent Bessel beams and apodization of evanescent field in near-field optical virtual probe. Proceedings of the SPIE, 2005, 5635, P. 42–47.
28. Novitsky A.V., Barkovsky L.M. Total internal reflection of vector Bessel beams: Imbert–Fedorov shift and intensity transformation. J. of Optics A Pure and Applied Optics, 2008, 10, 075006.
29. Al-Muhanna M.K., et al. Energy flow patterns in an optical field formed by a superposition of evanescent Bessel light beams. J. of Optics, 2011, 13 (10), 105703.
30. Cai W., Shalaev V.M. Optical Metamaterials – Fundamentals and Applications. Springer, Berlin, 2010.
Рецензия
Для цитирования:
Винь Н., Куинь Ань Н. Особенности поверхностных бесселевых плазмон-поляритонов в оптически анизотропных гиперболических метаматериалах. Наносистемы: физика, химия, математика. 2024;15(1):46-54. https://doi.org/10.17586/2220-8054-2024-15-1-46-54
For citation:
Vinh N., Quynh Anh N. Features of surface Bessel plasmon-polaritons in optical anisotropic hyperbolic metamaterials. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(1):46-54. https://doi.org/10.17586/2220-8054-2024-15-1-46-54