Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Формирование ультра- и нанодисперсных структур «ядро-оболочка» Ti0,8Mo0,2C0,5N0,5 – Ni – Mo в процессе плазмохимического синтеза механической смеси карбонитрида титана с металлическими Ni и Mo

https://doi.org/10.17586/2220-8054-2024-15-4-530-539

Аннотация

В процессе плазмохимического синтеза механической смеси карбонитрида титана TiC0,5N0,5 с металлическими никелем и молибденом в низкотемпературной азотной плазме (4000 – 6000 0С) с учетом переконденсации в турбулентном потоке газообразного азота получены порошковые композиции ультрадисперсного и нанокристаллического диапазона. Рентгенографически установлено, что фазовый состав характеризуется наличием кубических соединений в виде титан-молибденового карбонитрида Ti0,8Mo0,2C0,5N0,5, металлического Ni и Mo. Методами просвечивающей электронной микроскопии высокого разрешения в нанокристаллической фракции  визуализирована структура «ядро-оболочка», в состав которой входят такие фазы как Ti1-nMonCxNy, Ni, NiO, TiO2, MoC0,5N0,5.

Совокупность экспериментальных данных по измерению площади удельной поверхности методом BET и пикноментрической плотности позволили определить расчетные значения средних размеров частиц, которые составили 365 и 56 нм для фракций из циклона и фильтра, соответственно. Средний размер частиц нанокристаллической сроставляющей фракции из циклона, по результатам прямых измерений состави 22 нм.

На основе полученных экспериментальных результатов разработана модель формирования структур «ядро-оболочка» Ti0.8Mo0.2C0.5N0.5 – Ni – Mo, реализуемая в условиях турбулентного потока газообразного азота сформированного в закалочной камере плазмохимической установки.

Об авторах

Ю. А. Авдеева
Ural Branch, Russian Academy of Sciences
Россия


И. В. Лужкова
Ural Branch, Russian Academy of Sciences
Россия


А. М. Мурзакаев
Ural Branch, Russian Academy of Sciences
Россия


А. Н. Ермаков
Ural Branch, Russian Academy of Sciences
Россия


Список литературы

1. Liu C., Lu W., Weng G.J., Li J. A cooperative nano-grain rotation and grain-boundary migration mechanism for enhanced dislocation emission and tensile ductility in nanocrystalline materials. Materials Science and Engineering: A, 2019, 756, P. 284–290.

2. Lavrenko V.A., Podchernyaeva I.A., Shchur D.V., Zolotarenko An.D., Zolotarenko Al.D. Features of physical and chemical adsorption during interaction of polycrystalline and nanocrystalline materials with gases. Powder Metallurgy and Metal Ceramics, 2018, 56, P. 504–511.

3. Prusty D., Pathak A., Mukherjee M., Mukherjee B., Chowdhury A. TEM and XPS studies on the faceted nanocrystals of Ce0.8Zr0.2O2. Materials Characterization, 2015, 100, P. 31–35.

4. Chaturvedi A., Yaqub R., Baker I. Microstructure and magnetic properties of bulk nanocrystalline MnAl. Metals, 2014, 4(1), P. 20–27.

5. Guivar J., Martınez A., Anaya A., Valladares L., F´elix L., Dominguez A. Structural and magnetic properties of monophasic maghemite (γ-Fe2O3) nanocrystalline powder. Advances in Nanoparticles, 2014, 3(3), P. 49326.

6. Andrievsky R.A. Preparation and properties of nanocrystalline refractory compounds. Uspekhi khimii, 1994, 63(5), P. 431–448. (In Russ.)

7. Morokhov I.D., Trusov L.I., Chizhik S.P. Ultrafine metallic media. Atomizdat, Moscow, 1977, 264 p. (In Russ.)

8. Gusev A.I. Nanomaterials, nanostructures, nanotechnologies. 2nd ed., rev. Fizmatlit, Moscow, 2007, 414 p. (In Russ.)

9. Gusev A.I. Nanocrystalline materials: methods of preparation and properties. UrO RAN, Ekaterinburg, 1998, 199 p. (In Russ.)

10. Panov V.S., Chuvilin A.M. Technology and properties of hard alloys and products made from them. Textbook for universities. MISIS, Moscow, 2001, 428 p. (In Russ.)

11. Fedorenko V.V. Interaction of titanium carbide, nitride and carbonitride with nickel-based melts. Dissertation for the degree of candidate of chemical sciences. Sverdlovsk, 1981, 141 p.

12. Zhilyaev V.A., Patrakov E.I., Shveikin G.P. Current status and potential for development of W-free hard alloys. Proc. 2nd Int. Conf. Science Hard Mater. A Hilger Ltd, Bristol, Boston, 1986, P. 1063–1073.

13. Method for manufacturing hard alloys based on titanium carbonitride. A.s. 424659 USSR MPK B22F 3/12, C22C 29/00. Mitrofanov B.V., Shveikin G.P., Lyubimov V.D., Zainulin Yu.G., Alyamovsky S.I.; patent holder IH UC AS SSR, No. 1766386.

14. Askarova L.K., Shchipachev E.V., Ermakov A.N., Grigorov I.G., Zainulin Yu.G. Effects of vanadium and niobium on the phase composition of titanium-carbonitride-base cermets with titanium–nickel binder. Inorganic Materials, 2001, 37, P. 157–160.

15. Askarova L.Kh., Grigorov I.G., Fedorenko V.V., Zainulin Yu.G. Liquid-phase interaction in TiC0.5N0.5–TiNi–Ti–Zr and TiC0.5N0.5–TiNi–Ti–Zr alloys. Metally, 1998, 5, P. 16–19. (In Russ.)

16. Storozhenko P.A., Guseinov Sh.L., Malashin S.I. Nanodispersed Powders: Synthesis Methods and Practical Applications. Nanotechnologies in Russia, 2009, 4, P. 262–274.

17. Sadovnikov S.I., Gusev A.I. Effect of particle size and specific surface area on the determination of the density of nanocrystalline silver sulfide Ag2S powders. Physics of the Solid State, 2018, 60, P. 877–881.

18. Kisly P.S., Bondaruk N.I., Borovikova M.S., Zaverukha O.V., Kozina G.K., Kryl Ya.A., Kuzenkova M.A., Kushtalova I.P., Prikhodko L..I., Watchman B.D. Cermets. Naukova Dumka, Kyiv, 1985, 272 p. (In Russ.)

19. Shveikin G.P., Alyamovsky S.I., Zainulin Yu.G., Gusev A.I., Gubanov V.A., Kurmaev E.Z. Compounds of variable composition and their solid solutions. UC USSR Academy of Sciences, Sverdlovsk, 1984, 292 p. (In Russ.)

20. Ormont B.F. Compounds of variable composition. Khimiya, Leningrad, 1969, 520 p. (In Russ.)

21. Cermets. Edited by J.R. Tinklepaugh and W.B. Crandall. Reinhold Publishing Corp., New York, 1960, 239 p.

22. Hard sintered tungsten-free alloys. GOST 26530-85. USSR State Committee for Standards. Publishing house of standards, Moscow, 1985, 7 p. (In Russ.)

23. Rykalin N.N. Plasma processes in metallurgy and technology of inorganic materials. Nauka, Moscow, 1973, 243 p.

24. Barin I. Thermochemical Data of Pure Substances. Third Edition. VCH, Weinheim, New York, Base1, Cambridge, Tokyo, 1995, 2003 p.

25. Krzhizhanovsky R.E., Stern Z.Yu. Thermophysical properties of non-metallic materials (carbides). Directory. Energiya, Leningrad, 1976, 120 p. (In Russ.)

26. Kosolapova T.Ya. Handbook of high temperature compounds: properties, production, applications. CRC Press, New York, Washington, Philadelphia, London, 1990, 958 p.

27. Knunyants I.L. Chemical encyclopedia: in 5 volumes. V. 3. Sovetskaya entsiklopediya, Moscow, 1992, 639 p. (In Russ.)

28. Knunyants I.L. Chemical encyclopedia: in 5 volumes. V. 2. Sovetskaya entsiklopediya, Moscow, 1990, 671 p. (In Russ.)

29. Gusev A.I., Rempel A.A. Nonstoichiometry, disorder and order in solids. NISO UrO RAN, Ekaterinburg, 2001, 579 p. (In Russ.)

30. Samokhin A.V., Polyakov S., Astashov A.G., Tsvetkov Yu.V. Simulation of the process of synthesis of nanopowders in a plasma reactor jet type. I. Statement of the problem and model validation. Fizika i khimiya obrabotki materialov, 2013, 6, P. 40–46. (In Russ.)

31. Samokhin A.V., Polyakov S., Astashov A.G., Tsvetkov Yu.V. Simulation of the process of nanopowder synthesis in a jet-type plasma reactor. II. Nanoparticles formation. Inorganic Materials: Applied Research, 2014, 5(3), P. 224–229.

32. Avdeeva Yu.A., Luzhkova I.V., Ermakov A.N., Samigullina R.F., Vovkotrub E.G., Dobrinsky E.K., Zainulin Yu.G. Thermal properties of ultra- and nanodispersed core–shell structures of Ti(Mo)C and Ti(Mo)C-Co obtained during plasma-chemical synthesis by plasma recondensation scheme. Metallurgical and Materials Transactions B, 2020, 51, P. 1048–1059.

33. Avdeeva Yu.A., Luzhkova I.V., Ermakov A.N. Formation of titanium-cobalt nitride Ti0.7Co0.3N under plasma-chemical synthesis conditions in a low-temperature nitrogen plasma. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12(5), P. 641–649.

34. Avdeeva Yu.A., Luzhkova I.V., Ermakov A.N. Composition and structure of “core–shell” nanocrystalline particles based on titanium-molybdenum carbides obtained under the conditions of plasma-chemical synthesis. Powder Metallurgy and Functional Coatings, 2022, 2, P. 4-12. (In Russ.)

35. Avdeeva Yu.A., Luzhkova I.V., Ermakov A.N. Plasmachemical synthesis of TiC–Mo–Co nanoparticles with a core–shell structure in a low temperature nitrogen plasma. Russian Metallurgy, 2022, 2022(9), P. 977–984

36. Avdeeva Yu.A., Luzhkova I.V., Murzakaev A.M., Ermakov A.N. Plasma-chemical synthesis of nanocrystalline “core-shell” structures TiN–Mo– Co. Nanosystems: Physics, Chemistry, Mathematics. 2023, 14(1), P. 132–141.

37. Ermakov A.N., Luzhkova I.V., Avdeeva Yu.A., Murzakaev A.M., Zainulin Yu.G., Dobrinsky E.K. Formation of complex titanium-nickel nitride Ti0.7Ni0.3N in the “core-shell” structure of TiN–Ni. International Journal of Refractory Metals and Hard Materials, 2019, 84, P. 104996.

38. Avdeeva Yu.A., Luzhkova I.V., Ermakov A.N. Mechanism of formation of nanocrystalline particles with core-shell structure based on titanium oxynitrides with nickel in the process of plasma-chemical synthesis of TiNi in a low-temperature nitrogen plasma. Nanosystems: Physics, Chemistry, Mathematics, 2022, 13(2), P. 212–219


Рецензия

Для цитирования:


Авдеева Ю.А., Лужкова И.В., Мурзакаев А.М., Ермаков А.Н. Формирование ультра- и нанодисперсных структур «ядро-оболочка» Ti0,8Mo0,2C0,5N0,5 – Ni – Mo в процессе плазмохимического синтеза механической смеси карбонитрида титана с металлическими Ni и Mo. Наносистемы: физика, химия, математика. 2024;15(4):530-539. https://doi.org/10.17586/2220-8054-2024-15-4-530-539

For citation:


Avdeeva Yu.A., Luzhkova I.V., Murzakaev A.M., Ermakov A.N. Formation of ultra- and nanodis- persed “core-shell” structures Ti0.8Mo0.2C0.5N0.5–Ni–Mo in the process of plasma-chemical synthesis of a mechanical mixture of titanium carbonitride with metallic nickel and molybdenum. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(4):530-539. https://doi.org/10.17586/2220-8054-2024-15-4-530-539

Просмотров: 6


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)