Study of photocatalytic activity in two light ranges of Sr2Mn0.4Ti0.6O4 oxide with the K2NiF4-type structure.
https://doi.org/10.17586/2220-8054-2024-15-4-540-547
Abstract
The photocatalytic properties of single-phase sample Sr2Mn0.4Ti0.6O4 is studied as a representative of a series of Sr2MnxTi1−xO4 solid solutions (x = 0.05, 0.15, 0.25, 0.4) obtained by the SHS. The sample annealed at 1200 ◦C is characterized by a uniform distribution of Sr, Ti and Mn in the oxidation degree (4+) in side the aggregates, the average size of which does not exceed 1 μm. According to UV-Vis-NIR spectroscopy data, a narrowing of the band gap of Sr2TiO4 from 3.16 to 1.8 eV is observed when it is doped with 40 mol% of manganese. This is due to the high photoactivity of Sr2Mn0.4Ti0.6O4 in the HQ oxidation reaction in UV and blue light.
About the Authors
T. I. ChupakhinaRussian Federation
Tatyana I. Chupakhina
Pervomayskaya, 91, Ekaterinburg, 620990
O. I. Gyrdasova
Russian Federation
Olga I. Gyrdasova
Pervomayskaya, 91, Ekaterinburg, 620990
A. M. Uporova
Russian Federation
Anastasya M. Uporova
Pervomayskaya, 91, Ekaterinburg, 620990
L. Y. Buldakova
Russian Federation
Larisa Y. Buldakova
Pervomayskaya, 91, Ekaterinburg, 620990
M. Y. Yanchenko
Russian Federation
Mikhail Y. Yanchenko
Pervomayskaya, 91, Ekaterinburg, 620990
D. V. Mamedov
Russian Federation
Dzhavid V. Mamedov
Kazan, 420029
Yu. A. Deeva
Russian Federation
Yulia A. Deeva
Pervomayskaya, 91, Ekaterinburg, 620990
I. V. Baklanova
Russian Federation
Inna V. Baklanova
Pervomayskaya, 91, Ekaterinburg, 620990
References
1. Liu B., Li L., Liu X.Q., et al. Srn+1TinO3n+1 (n = 1, 2) microwave dielectric ceramics with medium dielectric constant and ultra-low dielectric loss. J. of the American Ceramic Society, 2017, 100 (2), P. 496–500.
2. Lu L.W., Lv M.L., Wang D., et al. Efficient photocatalytic hydrogen production over solid solutions Sr1−xBixTi1−xFexO3 (0 ≤ x ≤ 0.5). Applied Catalysis B – Environmental, 2017, 200, P. 412–419.
3. Lu L.W., Lv M.L., Liu G., et al., Photocatalytic hydrogen production over solid solutions between BiFeO3 and SrTiO3. Applied Surface Science, 2017, 391, P. 535–541.
4. Sorkh-Kaman-Zadeh A., Dashtbozorg A. Facile chemical synthesis of nanosize structure of Sr2TiO4 for degradation of toxic dyes from aqueous solution. J. Molecular Liquids, 2016, 223, P. 921–926.
5. Chupakhina T.I., Eremina R.M., Gyrdasova O.I., et al. Perovskite-like LaxSr2−xTi1−x/2Cux/2O4 (x = 0.2, 0.3, 0.5) oxides with the K2NiF4-type structure active in visible light range: new members of the photocatalyst family. J. of the Korean Ceramic Society, 2024, 61 (5).
6. Skvortsova L.N., Chukhlomina L.N., Gormakova N.A., et al. Investigation of B-N-Fe and Si-N-Fe catalysts ability to remove phenol compounds from water in presence of ozone and UV irradiation. Vestnik Tomskogo Gosudarstvennogo Universiteta, 2013, 370, P. 190–193.
7. Sobczynski A., Duczmal L., Zmudzinski W., Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. J. Molecular Catalysis A – Chemical, 2004, 213 (2), P. 225–230.
8. Chen X.B., Shen S.H., Guo L.J., et al. Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 2010, 110 (11), P. 6503– 6570.
9. Sun X.Q., Xie Y.H., Wu F.F., et al. Photocatalytic Hydrogen Production over Chromium Doped Layered Perovskite Sr2TiO4. Inorganic Chemistry, 2015, 54 (15), P. 7445–7453.
10. Sun X.Q., Xu X.X. Efficient photocatalytic hydrogen production over La/Rh co-doped Ruddlesden-Popper compound Sr2TiO4. Applied Catalysis B – Environmental, 2017, 210, P. 149–159.
11. Sun X.Q., Mi Y.L., Jiao F., et al. Activating Layered Perovskite Compound Sr2TiO4 via La/N Codoping for Visible Light Photocatalytic Water Splitting. ACS Catalysis, 2018, 8 (4), P. 3209–3221.
12. Yu J.X., Xu X.X. Fluorination over Cr doped layered perovskite Sr2TiO4 for efficient photocatalytic hydrogen production under visible light illumination. J. of Energy Chemistry, 2020, 51, P. 30–38.
13. Pany S., Nashim A., Parida K. Titanium-Based Mixed Metal Oxide Nanocomposites for Visible Light-Induced Photocatalysis. Nanocomposites for Visible Light-Induced Photocatalysis, 2017, P. 295–331.
14. Iriani Y., Afriani R., Sandi D.K., et al. Co-precipitation Synthesis and Photocatalytic Activity of Mn doped SrTiO3 for the Degradation of Methylene Blue Wastewater. Evergreen Joint J. of Novel Carbon Resource Sciences & Green Asia Strategy, 2022, 9 (4), P. 1039–1045.
15. Patial S., Hasija V., Raizada P., et al. Tunable photocatalytic activity of SrTiO3 for water splitting: Strategies and future scenario. J. Environmental Chemical Engineering, 2020, 8 (3), 103791.
16. Chupakhina T.I., Deeva Y.A., Melnikova N.V., et al. Synthesis, structure and dielectric properties of new oxide compounds Ln1−xSr1+xCux/2Ti1−x/2O4 (Ln = La, Pr, Nd) belonging to the structural type of K2NiF4. Mendeleev Communications, 2019, 29 (3), P. 349– 351.
17. Thanh T.D., Phan T.L., Oanh L.M., et al. Influence of Mn doping on the crystal structure, and optical and magnetic properties of SrTiO3 compounds. IEEE Trans. Magn., 2014, 201450, P. 1–4.
18. Mansoor H., Harrigan W.L., Lehuta K.A., et al. Reversible Control of the Mn Oxidation State in SrTiO3 Bulk Powders. Front. Chem., 2019, 7 (353), P. 1–8.
19. Shannon R.D., Prewitt C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B, 1969, 25 (5), P. 925–946.
20. Huber D.L. Linear temperature dependence of electron spin resonance linewidths in La0.7Ca0.3MnO3 and YBaMn2O6. 2013, arXiv:1309.6353.
21. Schaile S., et al. Korringa-like relaxation in the high-temperature phase of A-site ordered YBaMn2O6. Physical Review B, 2012, 85 (20), 205121.
22. Stoyanova R., Zhecheva E., Vassilev S. Mn4+ environment in layered Li [Mg0.5-xNixMn0.5]O2 oxides monitored by EPR spectroscopy. J. Solid State Chemistry, 2006, 179 (2), P. 378–388.
23. Li K., et al. Achieving efficient red-emitting Sr2Ca1−δ Lnδ WO6: Mn4+ (Ln= La, Gd, Y, Lu, δ = 0.10) phosphors with extraordinary luminescence thermal stability for potential UV-LEDs application via facile ion substitution in luminescence-ignorable Sr2CaWO6: Mn4+. ACS Materials Letters, 2020, 2 (7), P. 771–778.
24. Zheng W.C., Wu X.X. Studies of EPR g factors of the isoelectronic 3d3 series Cr3+, Mn4+ and Fe5+ in SrTiO3 crystals. J. of Physics and Chemistry of Solids, 2005, 66 (10), P. 1701–1704.
25. Tan H., Zhao Z., Zhu W.B., et al. Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3. ACS Appl. Mater. Interfaces, 2014, 6, P. 19184–19190.
26. Wang Zh., Murugananthan M., Zhang Ya. Graphitic carbon nitride based photocatalysis for redox conversion of arsenic(III) and chromium(VI) in acid aqueous solution. Applied Catalysis B – Environmental, 2019, 248, P. 349–356.
27. Baklanova I.V., Krasil’nikov V.N., Gyrdasova O.I., & Buldakova L.Y. Synthesis and optical and photocatalytic properties of manganese-doped titanium oxide with a three-dimensional architecture of particles. Mendeleev Communications, 2016, 26, P. 335–337.
Review
For citations:
Chupakhina T.I., Gyrdasova O.I., Uporova A.M., Buldakova L.Y., Yanchenko M.Y., Mamedov D.V., Deeva Yu.A., Baklanova I.V. Study of photocatalytic activity in two light ranges of Sr2Mn0.4Ti0.6O4 oxide with the K2NiF4-type structure. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(4):540-547. https://doi.org/10.17586/2220-8054-2024-15-4-540-547