Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Исследование фотокаталитической активности в двух световых диапазонах оксида Sr2Mn0,4Ti0,6O4 со структурой типа K2NiF4

https://doi.org/10.17586/2220-8054-2024-15-4-540-547

Аннотация

Изучены фотокаталитические свойства однофазного образца Sr2Mn0.4Ti0.6O4 как представителя серии твердых растворов Sr2MnxTi1-xO4 (x = 0,05; 0,15; 0,25; 0,4), полученного методом СВС. Образец, отожженный при 1200°С, характеризуется равномерным распределением Sr, Ti и Mn степени окисления (4+) внутри агрегатов, средний размер которых не превышает 1 мкм. По данным UV-Vis-NIR -спектроскопии при легировании его 40 мол% марганца наблюдается сужение запрещенной зоны Sr2TiO4 с 3,16 до 1,8 эВ. Это связано с высокой фотоактивностью Sr2Mn0,4Ti0,6O4 в реакции окисления HQ в УФ и синем свете.

Об авторах

Т. Чупахина
Institute of Solid State Chemistry UB RAS
Россия


О. Гырдасова
Institute of Solid State Chemistry UB RAS
Россия


А. Упорова
Institute of Solid State Chemistry UB RAS
Россия


Л. Булдакова
Institute of Solid State Chemistry UB RAS
Россия


М. Янченко
Institute of Solid State Chemistry UB RAS
Россия


Д. Мамедов
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS
Россия


Ю. Деева
Institute of Solid State Chemistry UB RAS
Россия


И. Бакланова
Institute of Solid State Chemistry UB RAS
Россия


Список литературы

1. Liu B., Li L., Liu X.Q., et al. Srn+1TinO3n+1 (n = 1, 2) microwave dielectric ceramics with medium dielectric constant and ultra-low dielectric loss. J. of the American Ceramic Society, 2017, 100 (2), P. 496–500.

2. Lu L.W., Lv M.L., Wang D., et al. Efficient photocatalytic hydrogen production over solid solutions Sr1−xBixTi1−xFexO3 (0 ≤ x ≤ 0.5). Applied Catalysis B – Environmental, 2017, 200, P. 412–419.

3. Lu L.W., Lv M.L., Liu G., et al., Photocatalytic hydrogen production over solid solutions between BiFeO3 and SrTiO3. Applied Surface Science, 2017, 391, P. 535–541.

4. Sorkh-Kaman-Zadeh A., Dashtbozorg A. Facile chemical synthesis of nanosize structure of Sr2TiO4 for degradation of toxic dyes from aqueous solution. J. Molecular Liquids, 2016, 223, P. 921–926.

5. Chupakhina T.I., Eremina R.M., Gyrdasova O.I., et al. Perovskite-like LaxSr2−xTi1−x/2Cux/2O4 (x = 0.2, 0.3, 0.5) oxides with the K2NiF4-type structure active in visible light range: new members of the photocatalyst family. J. of the Korean Ceramic Society, 2024, 61 (5).

6. Skvortsova L.N., Chukhlomina L.N., Gormakova N.A., et al. Investigation of B-N-Fe and Si-N-Fe catalysts ability to remove phenol compounds from water in presence of ozone and UV irradiation. Vestnik Tomskogo Gosudarstvennogo Universiteta, 2013, 370, P. 190–193.

7. Sobczynski A., Duczmal L., Zmudzinski W., Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. J. Molecular Catalysis A – Chemical, 2004, 213 (2), P. 225–230.

8. Chen X.B., Shen S.H., Guo L.J., et al. Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 2010, 110 (11), P. 6503– 6570.

9. Sun X.Q., Xie Y.H., Wu F.F., et al. Photocatalytic Hydrogen Production over Chromium Doped Layered Perovskite Sr2TiO4. Inorganic Chemistry, 2015, 54 (15), P. 7445–7453.

10. Sun X.Q., Xu X.X. Efficient photocatalytic hydrogen production over La/Rh co-doped Ruddlesden-Popper compound Sr2TiO4. Applied Catalysis B – Environmental, 2017, 210, P. 149–159.

11. Sun X.Q., Mi Y.L., Jiao F., et al. Activating Layered Perovskite Compound Sr2TiO4 via La/N Codoping for Visible Light Photocatalytic Water Splitting. ACS Catalysis, 2018, 8 (4), P. 3209–3221.

12. Yu J.X., Xu X.X. Fluorination over Cr doped layered perovskite Sr2TiO4 for efficient photocatalytic hydrogen production under visible light illumination. J. of Energy Chemistry, 2020, 51, P. 30–38.

13. Pany S., Nashim A., Parida K. Titanium-Based Mixed Metal Oxide Nanocomposites for Visible Light-Induced Photocatalysis. Nanocomposites for Visible Light-Induced Photocatalysis, 2017, P. 295–331.

14. Iriani Y., Afriani R., Sandi D.K., et al. Co-precipitation Synthesis and Photocatalytic Activity of Mn doped SrTiO3 for the Degradation of Methylene Blue Wastewater. Evergreen Joint J. of Novel Carbon Resource Sciences & Green Asia Strategy, 2022, 9 (4), P. 1039–1045.

15. Patial S., Hasija V., Raizada P., et al. Tunable photocatalytic activity of SrTiO3 for water splitting: Strategies and future scenario. J. Environmental Chemical Engineering, 2020, 8 (3), 103791.

16. Chupakhina T.I., Deeva Y.A., Melnikova N.V., et al. Synthesis, structure and dielectric properties of new oxide compounds Ln1−xSr1+xCux/2Ti1−x/2O4 (Ln = La, Pr, Nd) belonging to the structural type of K2NiF4. Mendeleev Communications, 2019, 29 (3), P. 349– 351.

17. Thanh T.D., Phan T.L., Oanh L.M., et al. Influence of Mn doping on the crystal structure, and optical and magnetic properties of SrTiO3 compounds. IEEE Trans. Magn., 2014, 201450, P. 1–4.

18. Mansoor H., Harrigan W.L., Lehuta K.A., et al. Reversible Control of the Mn Oxidation State in SrTiO3 Bulk Powders. Front. Chem., 2019, 7 (353), P. 1–8.

19. Shannon R.D., Prewitt C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B, 1969, 25 (5), P. 925–946.

20. Huber D.L. Linear temperature dependence of electron spin resonance linewidths in La0.7Ca0.3MnO3 and YBaMn2O6. 2013, arXiv:1309.6353.

21. Schaile S., et al. Korringa-like relaxation in the high-temperature phase of A-site ordered YBaMn2O6. Physical Review B, 2012, 85 (20), 205121.

22. Stoyanova R., Zhecheva E., Vassilev S. Mn4+ environment in layered Li [Mg0.5-xNixMn0.5]O2 oxides monitored by EPR spectroscopy. J. Solid State Chemistry, 2006, 179 (2), P. 378–388.

23. Li K., et al. Achieving efficient red-emitting Sr2Ca1−δ Lnδ WO6: Mn4+ (Ln= La, Gd, Y, Lu, δ = 0.10) phosphors with extraordinary luminescence thermal stability for potential UV-LEDs application via facile ion substitution in luminescence-ignorable Sr2CaWO6: Mn4+. ACS Materials Letters, 2020, 2 (7), P. 771–778.

24. Zheng W.C., Wu X.X. Studies of EPR g factors of the isoelectronic 3d3 series Cr3+, Mn4+ and Fe5+ in SrTiO3 crystals. J. of Physics and Chemistry of Solids, 2005, 66 (10), P. 1701–1704.

25. Tan H., Zhao Z., Zhu W.B., et al. Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3. ACS Appl. Mater. Interfaces, 2014, 6, P. 19184–19190.

26. Wang Zh., Murugananthan M., Zhang Ya. Graphitic carbon nitride based photocatalysis for redox conversion of arsenic(III) and chromium(VI) in acid aqueous solution. Applied Catalysis B – Environmental, 2019, 248, P. 349–356.

27. Baklanova I.V., Krasil’nikov V.N., Gyrdasova O.I., & Buldakova L.Y. Synthesis and optical and photocatalytic properties of manganese-doped titanium oxide with a three-dimensional architecture of particles. Mendeleev Communications, 2016, 26, P. 335–337.


Рецензия

Для цитирования:


Чупахина Т., Гырдасова О., Упорова А., Булдакова Л., Янченко М., Мамедов Д., Деева Ю., Бакланова И. Исследование фотокаталитической активности в двух световых диапазонах оксида Sr2Mn0,4Ti0,6O4 со структурой типа K2NiF4. Наносистемы: физика, химия, математика. 2024;15(4):540-547. https://doi.org/10.17586/2220-8054-2024-15-4-540-547

For citation:


Chupakhina T.I., Gyrdasova O.I., Uporova A.M., Buldakova L.Y., Yanchenko M.Y., Mamedov D.V., Deeva Yu.A., Baklanova I.V. Study of photocatalytic activity in two light ranges of Sr2Mn0.4Ti0.6O4 oxide with the K2NiF4-type structure. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(4):540-547. https://doi.org/10.17586/2220-8054-2024-15-4-540-547

Просмотров: 7


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)