Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis of magnesium ferrite by combustion of glycine-nitrate gel: the influence of reagents on the gel-precursor and the microstructure of nanopowders

https://doi.org/10.17586/2220-8054-2024-15-2-224-232

Abstract

In this study, the influence of initial reagents on the phase composition and morphology of magnesium ferrite obtained by combustion of glycine-nitrate gel was investigated. The local environment of iron ions in the gel-precursor was studied in detail using FT-IR, XANES- and EXAFS-spectroscopy. It has been established that in the gel-precursor obtained by dissolving metals (Mg, Fe) in dilute nitric acid, binuclear Fe(III) complexes are formed, while in a similar gel-precursor obtained from crystalline hydrates of nitrates of the corresponding metals, trinuclear Fe(III) complexes predominate. Combustion of a gel consisting of binuclear Fe(III) complexes leads to the formation of nanocrystalline magnesium ferrite powder, characterized by a unimodal particle size distribution.

About the Authors

M. N. Smirnova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Maria N. Smirnova.

119991, 31 Leninsky Prospect, Moscow



G. E. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Galina E. Nikiforova.

119991, 31 Leninsky Prospect, Moscow



O. N. Kondrat’eva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Olga N. Kondrat’eva.

119991, 31 Leninsky Prospect, Moscow



References

1. Heidari P., Masoudpanah S.M. Structural and magnetic properties of MgFe2O4 powders synthesized by solution combustion method: the effect of fuel type. J. Mater. Res. Technol., 2020, 9(3), P. 4469–4475.

2. Nagarajan V., Thayumanavan A. MgFe2O4 thin films for detection of ethanol and acetone vapours. Surf Eng, 2018, 34(9), P. 711–720.

3. Polat K., Yurdakoc M. Solar Decolorization of Methylene Blue by Magnetic MgFe2O4-MWCNT/Ag3VO4 Visible Active Photocatalyst. Water Air Soil Pollut., 2018, 229, P. 331.

4. Liming F., Haowen C., Kang W., Xitao W. Oxygen-vacancy generation in MgFe2O4 by high temperature calcination and its improved Photocatalytic activity for CO2 Reduction. J. Alloys Compd., 2021, 891, P. 161925.

5. Das K.Ch., Dhara S.S. Rapid catalytic degradation of malachite green by MgFe2O4 nanoparticles in presence of H2O2. J. Alloys Compd., 2020, 828(5), P. 154462.

6. Nadargi D., Umar A., Nadargi J., Patil J., Mulla I., Akbar S., Suryavanshi S. Spinel Magnesium Ferrite (MgFe2O4): A Glycine-Assisted Colloidal Combustion and Its Potentiality in Gas-Sensing Application. Chemosensors, 2022, 10(9), P. 361.

7. Zhang L., Wang Y., Liu B., Wang J., Han G., Zhang Y. Characterization and property of magnetic ferrite ceramics with interesting multilayer structure prepared by solid-state reaction. Ceram. Int., 2021, 47(8), P. 10927–10939.

8. Naaz F., Dubey H. K., Kumari C., Lahiri P. Structural and magnetic properties of MgFe2O4 nanopowder synthesized via co-precipitation route. SN Applied Sciences, 2020, 2(5), P. 808.

9. Naidu K.C.B., Madhuri W. Microwave Hydrothermal Synthesis: Structural and Dielectric Properties of nano MgFe2O4. Materials Today: Proceedings, 2016, 3(10 B), P. 3810–3813.

10. Mishra B., Munisha B., Nanda J., Sankaran K.J., Suman S. Hydrothermally Synthesized Magnesium doped Zinc Ferrite Nanoparticles: An extensive study on structural, optical, magnetic, and dielectric properties, Materials Chemistry and Physics, 2022, 292, P. 126791.

11. Komlev A.A., Gusarov V.V. Glycine-nitrate combustion synthesis of nonstoichiometric Mg-Fe spinel nanopowders. Inorg Mater., 2014, 50, P. 1247–1251.

12. Zhernovoi A.I., Komlev A.A., D’yachenko S.V., Magnetic characteristics of MgFe2O4 nanoparticles obtained by glycine–nitrate synthesis. Tech. Phys., 2016, 61, P. 302–305.

13. Jamdade S., Tambade P., Rathod S., Structural and magnetic study of Tb3+ doped zinc ferrite by sol-gel auto-combustion technique. Nanosyst. Physics, Chem. Math., 2023, 14, P. 254–263.

14. Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. Solution combustion synthesis of nanoscale materials, Chemical Reviews, 2016, 116, P. 14493–14586.

15. Carlos E., Martins R., Fortunato E., Branquinho R. Solution combustion synthesis: towards a sustainable approach for metal oxides. Chem.–Eur. J., 2020, 26, P. 9099–9125.

16. Wen W., Wu J.-M. Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Adv., 2014, 4, P. 58090.

17. Li F.-T., Ran J., Jaroniec M., Qiao S.Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale, 2015, 7, P. 17590–17610.

18. Smirnova M.N., Glazkova I.S., Nikiforova G.E., Kop’eva M.A., Eliseev A.A., Gorbachev E.A., Ketsko V.A., Synthesis of Ce:YIG nanopowder by gel combustion, Nanosyst. Physics, Chem. Math., 2021, 12(2), P. 210–217.

19. Zhuravlev V.D., Dmitriev A.V., Vladimirova E.V. et al. Parameters of Glycine–Nitrate Synthesis of NiCo2O4 Spinel. Russ. J. Inorg. Chem., 2021, 66, P. 1895–1903.

20. Martinson K.D., Belyak V.E., Sakhno D.D., Kiryanov N.V., Chebanenko M.I., Popkov V.I., Effect of fuel type on solution combustion synthesis and photocatalytic activity of NiFe2O4 nanopowders. Nanosyst. Physics, Chem. Math., 2021, 12, P. 792–798.

21. Lebedev L. A., Tenevich M. I., Popkov V. I. The effect of solution-combustion mode on the structure, morphology and size-sensitive photocatalytic performance of MgFe2O4 nanopowders. Condensed Matter and Interphases, 2022, 24(4), P. 496–503.

22. Mukasyan A.S., Rogachev A.S., Aruna S.T., Combustion synthesis in nanostructured reactive systems. Adv. Powder Technol., 2015, 26, P. 954–976.

23. Ravel B., Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synch. Radiat, 2005, 12(4), P. 537–541.

24. Newville M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synch. Radiat., 2001, 8(2), P. 322–324.

25. https://webbook.nist.gov/cgi/cbook.cgi?ID=C56406&Units=SI&Type=IR-SPEC&Index=1#IR-SPEC

26. Silverstein R.M., Bassler G.C., Morrill T.C. Spectrometric Identification of Organic Compounds, John Wiley & Sons, New York, 1981.

27. Butyrskaya E.V., Nechaeva L.S., Shaposhnik V.A., Drozdova E.I. Assignment of bands in IR spectra of aqueous glycine solutions based on quantum chemical calculation. J. Sorption and chromatographic processes, 2012, 12(4), P. 501–511.

28. Boldyreva E.V., Drebushchak V.A., Drebushchak T.N., Paukov I.E., Kovalevskaya Y.A., Shutova E.S. Polymorphism of glycine: Thermodynamic aspects. Part I - Relative stability of the polymorphs. J. Therm. Anal. Calorim., 2003, 73, P. 409–418.

29. Larkin P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, Elsevier, 2017, 286 p.

30. Jain D., Sudarsan V., Patra A.K., Sastry P.U., Tyagi A.K. Effect of local ordering around Th4+ ions in glycine-nitrate precursor gel on the powder characteristic of gel-combusted ThO2. J. Nucl. Mater., 2019, 527, P. 151826.

31. Warrier A.V.R., Narayanan P.S. Infrared absorption spectra of single crystals of glycine silver nitrate and monoglycine nitrate. Proc. Indian Acad. Sci., 1967, 66, P. 46–54.

32. Turte K.I., Lazaresku A.G., Simonov Yu.A., Lipkovskii Ya., Dvorkin A.A., Patron L. Structure of (µ3-Oxo)-hexa(µ-glycine-O, O’)triaquatriiron(III) Nitrate 3.5-Hydrate. Russ. J. Coord. Chem., 1996, 22(1), P. 45–53.


Review

For citations:


Smirnova M.N., Nikiforova G.E., Kondrat’eva O.N. Synthesis of magnesium ferrite by combustion of glycine-nitrate gel: the influence of reagents on the gel-precursor and the microstructure of nanopowders. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(2):224-232. https://doi.org/10.17586/2220-8054-2024-15-2-224-232

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)