Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Numerical model of temperature-dependent thermal conductivity in M1−x Rx F2+x heterovalent solid solution nanocomposites where M stands for alkaline-earth metals and R for rare-earth metals

https://doi.org/10.17586/2220-8054-2024-15-2-255-259

Abstract

We propose a mathematical model to fit the temperature-dependent thermal conductivity of M1−xRxF2+x heterovalent solid solutions where M stands for alkaline-earth metals and R for rare-earth metals. These solid solutions experience composition-driven transition from the crystal-like to glass-like behavior of thermal conductivity. When tested on Ca1−xYbxF2+x solid solutions, the model showed a potential for use with an option for further improvements.

About the Authors

P. A. Popov
Petrovsky Bryansk State University
Russian Federation

Pavel A. Popov.

14 Bezhitskaya str., Bryansk, 241036



A. V. Shchelokov
Petrovsky Bryansk State University
Russian Federation

Alexander V. Shchelokov.

14 Bezhitskaya str., Bryansk, 241036



P. P. Fedorov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Pavel P. Fedorov.

38 Vavilova str., Moscow, 119991



References

1. Peierls R. Zur kinetischen theorie der warmeleitung in kristallen. Annalen der Physik, 1929, 3, P. 1055–1101.

2. Klemens P.G. Thermal conductivity and lattice vibrational modes. Solid State Phys., 1958, 7, P. 1–98.

3. Callaway J. Model for lattice thermal conductivity at low temperatures. Phys. Rev., 1959, 113 (4), P. 1046–1051.

4. Callaway J., Baeyer H.C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev., 1960, 120 (4), P. 1149–1154.

5. Berman R. Thermal Conduction in Solids. Clarendon Press, Oxford, 1976.

6. Gaumé R., Viana B., Vivien D., Roger J.-P., Fournier D. A simple model for the prediction of thermal conductivity in pure and doped insulating crystals. Appl. Phys. Lett., 2003, 83 (7), P. 1355–1358.

7. Kuznetcov S.V., Osiko V.V., Tkatchenko E.A., Fedorov P.P. Inorganic nanofluorides and related nanocomposites. Russ. Chem. Rev., 2006, 75 (12), P. 1065–1082.

8. Popov P.A., Fedorov P.P., Kuznetsov S.V., Konyushkin V.A., Osiko V.V., Basiev T.T. Thermal conductivity of single crystals of Ca1−xYbxF2+x solid solutions. Doklady Physics, 2008, 53 (4), P. 198–200.

9. Popov P.A., Fedorov P.P., Kuznetsov S.V., Konyushkin V.A., Osiko V.V., Basiev T.T. Thermal conductivity of single crystals of Ba1−xYbxF2+x. Doklady Physics, 2008, 53 (7), P. 353–355.

10. Popov P.A., Fedorov P.P., Reiterov V.M., Garibin E.A., Demidenko A.A., Mironov I.A., Osiko V.V. Thermal conductivity of single crystals of Ca1−xErxF2+x and Ca1−xTmxF2+x solid solutions. Doklady Physics, 2012, 57 (3), P. 97–99.

11. Popov P.A., Fedorov P.P., Konushkin V.A. Heat Conductivity of Ca1−xRxF2+x (R= La, Ce, or Pr; 0 ≤ x ≤ 0.25) Heterovalent Solid Solutions. Crystallogr. Rep., 2015, 60 (5), P. 744–748.

12. Popov P.A., Fedorov P.P. Thermal conductivity of fluoride optical materials. Bryansk: “Desyatochka” Group of Companies, 2012. (in Russian)

13. Liu K., Bian G., Zhang Z., Ma F., Su L. Modelling and analyzing the glass-like heat transfer behavior of rare-earth doped alkaline earth fluoride crystals. CrystEngComm, 2022, 24, 6468.

14. Liu K., Bian G., Zhang Z., Ma F., Su L. Simulation and demonstration of glass-like heat transfer equations in rare-earth doped alkaline earth fluoride crystals. Chinese J. of Physics, 2024, 88, P. 584–593.

15. Matthiessen A., Vogt C. On the Influence of Temperature on the Electric Conducting-Power of Alloys. Philosophical Transactions of the Royal Society of London, 1864, 154, P. 167–200.

16. Lifshits I.M. Electron Theory of Metals. Springer, 1973.


Review

For citations:


Popov P.A., Shchelokov A.V., Fedorov P.P. Numerical model of temperature-dependent thermal conductivity in M1−x Rx F2+x heterovalent solid solution nanocomposites where M stands for alkaline-earth metals and R for rare-earth metals. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(2):255-259. https://doi.org/10.17586/2220-8054-2024-15-2-255-259

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)