Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Green approach to production of porous char adsorbents via oxidative carbonization in fluidized catalyst bed

https://doi.org/10.17586/2220-8054-2024-15-2-285-299

Abstract

A green and energy-efficient technique for production of porous carbon-mineral chars from agricultural wastes (rice husk, wheat bran) and sedimentary carbonaceous feedstocks (high-ash peat, coal) was developed. It is based on partial combustion in fluidized bed of a deep oxidation catalyst at low temperatures (465 – 600 ◦C). This technique yields porous chars with an elevated mineral content that depends on a feed-stock used, and gaseous products of complete oxidation. It was found that the obtained chars have developed porosity with BET specific surface area of ca. 50 – 170 m2g−1, pore volume of 0.05 – 0.17 ml·g−1, and ash content of 16 – 79 wt. %. They were additionally characterized by TGA and FTIR. Their testing as adsorbents for heavy metal ions (by the example of Cu2+) and organic dyes (by the example of methyl green) revealed that their adsorption capacities are comparable to those of chars produced by the conventional pyrolytic approaches.

About the Authors

P. M. Yeletsky
Federal Research Center Boreskov Institute of Catalysis SB RAS
Russian Federation

Petr M. Yeletsky.

Acad. Lavrentiev av., 5, Novosibirsk, 630090



N. A. Yazykov
Federal Research Center Boreskov Institute of Catalysis SB RAS
Russian Federation

Nikolay A. Yazykov.

Acad. Lavrentiev av., 5, Novosibirsk, 630090



Yu. V. Dubinin
Federal Research Center Boreskov Institute of Catalysis SB RAS
Russian Federation

Yury V. Dubinin.

Acad. Lavrentiev av., 5, Novosibirsk, 630090



M. M. Borodaevskiy
Federal Research Center Boreskov Institute of Catalysis SB RAS
Russian Federation

Maksim M. Borodaevskiy.

Acad. Lavrentiev av., 5, Novosibirsk, 630090



S. A. Selishcheva
Federal Research Center Boreskov Institute of Catalysis SB RAS
Russian Federation

Svetlana A. Selishcheva.

Acad. Lavrentiev av., 5, Novosibirsk, 630090



V. A. Yakovlev
Federal Research Center Boreskov Institute of Catalysis SB RAS
Russian Federation

Vadim A. Yakovlev.

Acad. Lavrentiev av., 5, Novosibirsk, 630090



References

1. Jeguirim M., Limousy L. Biomass Chars: Elaboration, Characterization and Applications, MDPI, Basel, 2018.

2. Xiang W., Zhang X., Chen J., Zou W., He F., Hu X., Tsang D.C.W., Ok Y.S., Gao B. Biochar technology in wastewater treatment: A critical review. Chemosphere, 2020, 252, 126539.

3. Suárez-Almeida M., Gómez-Barea A., Ghoniem A.F., Pfeifer C. Solar gasification of biomass in a dual fluidized bed. Chem. Eng. J., 2021, 406, 126665.

4. Heidari M., Salaudeen S., Arku P., Acharya B., Tasnim S., Dutta A. Development of a mathematical model for hydrothermal carbonization of biomass: Comparison of experimental measurements with model predictions. Energy, 2021, 214, 119020.

5. Liu Y., Rokni E., Yang R., Ren X., Sun R., Levendis Y.A. Torrefaction of corn straw in oxygen and carbon dioxide containing gases: Mass/energy yields and evolution of gaseous species. Fuel, 2021, 285, 119044.

6. Mortari D.A., Perondi D., Rossi G.B., Bonato J.L., Godinho M., Pereira F.M. The influence of water-soluble inorganic matter on combustion of grape pomace and its chars produced by slow and fast pyrolysis. Fuel, 2021, 284, 118880.

7. Braghiroli F.L., Bouafif H., Neculita C.M., Koubaa A. Influence of Pyro-Gasification and Activation Conditions on the Porosity of Activated Biochars: A Literature Review. Waste and Biomass Valorization, 2020, 11, P. 5079–5098.

8. Li Z., Zhong Z., Zhang B., Wang W., Zhao H., Seufitelli G.V.S., Resende F.L.P. Microwave-assisted catalytic fast pyrolysis of rice husk over a hierarchical HZSM-5/MCM-41 catalyst prepared by organic base alkaline solutions. Sci. Total Environ., 2021, 750, 141215.

9. Pawar A., Panwar N.L., Salvi B.L. Comprehensive review on pyrolytic oil production, upgrading and its utilization. J. Mater. Cycles Waste Manag., 2020, 22, P. 1712–1722.

10. Iannello S., Morrin S., Materazzi M. Fluidised Bed Reactors for the Thermochemical Conversion of Biomass and Waste. KONA Powder Part. J., 2020, 37, P. 114–131.

11. Karmee S.K., Kumari G., Soni B. Pilot scale oxidative fast pyrolysis of sawdust in a fluidized bed reactor: A biorefinery approach. Bioresour. Technol., 2020, 318, 124071.

12. Mullen C.A., Boateng A.A. Accumulation of Inorganic Impurities on HZSM-5 Zeolites during Catalytic Fast Pyrolysis of Switchgrass. Ind. Eng. Chem. Res., 2013, 52, P. 17156–17161.

13. Yazykov N.A., Simonov A.D., Dubinin Y.V., Zaikina O.O. Catalytic Co-Combustion of Peat and Anthracite in a Fluidized Bed. Catal. Ind., 2019, 11, P. 342–348.

14. Simonov A.D., Fedorov N.A., Dubinin Y.V., Yazykov N.A., Yakovlev V.A., Parmon V.N. Catalytic heat-generating units for industrial heating. Catal. Ind., 2013, 5, P. 42–49.

15. Yazykov N.A., Simonov A.D., Aflyatunov A.S., Dubinin Y.V., Selischeva S.A., Yakovlev V.A., Stepanenko A.I. Combustion of Shale Heavy Coal-Tar Products in a Boiling Layer of a Catalyst. Chem. Sustain. Dev., 2017, 25, P. 313–321.

16. Yazykov N.A., Dubinin Y.V., Simonov A.D., Reshetnikov S.I., Yakovlev V.A. Features of sulfur oils catalytic combustion in fluidized bed. Chem. Eng. J., 2016, 283, P. 649–655.

17. Dubinin Y.V., Yazykov N.A., Reshetnikov S.I., Yakovlev V.A. Catalytic combustion of sulfur-containing liquid fuels in the fluidized bed: Experiment and modeling. J. Ind. Eng. Chem., 2021, 93, P. 163–169.

18. Fedorov A.V., Dubinin Y.V., Yeletsky P.M., Fedorov I.A., Shelest S.N., Yakovlev V.A. Combustion of sewage sludge in a fluidized bed of catalyst: ASPEN PLUS model. J. Hazard. Mater., 2021, 405, 124196.

19. Nikitin D.S., Shanenkov I.I., Yeletsky P.M., Nassyrbayev A., Tabakaev R.B., Shanenkova Y.L., Ryskulov D.N., Tsimmerman A.I., Sivkov A.A. Agricultural waste derived silicon carbide composite nanopowders as efficient coelectrocatalysts for water splitting. J. Clean. Prod., 2024, 442, 140890.

20. Yeletsky P.M., Dubinin Y.V., Yazykov N.A., Tabakaev R.B., Okotrub K.A., Yakovlev V.A. Conversion of natural feedstocks to porous carbons via carbonization in fluidized catalyst bed followed by leaching the feedstock mineral template phase: A comparison of biomass and sedimentary raw materials. Fuel Process. Technol., 2022, 226, 107076.

21. Tabakaev R., Ibraeva K., Kan V., Dubinin Y., Rudmin M., Yazykov N., Zavorin A. The effect of co-combustion of waste from flour milling and highly mineralized peat on sintering of the ash residue. Energy, 2020, 196, 117157.

22. Tabakaev R., Astafev A., Dubinin Y., Yazykov N., Yakovlev V. Evaluation of Autothermal Peat Pyrolysis Realization for Fuel Processing Technologies. Waste and Biomass Valorization, 2019, 10, P. 1021–1027.

23. Yeletsky P.M., Yakovlev V.A., Mel’gunov M.S., Parmon V.N. Synthesis of mesoporous carbons by leaching out natural silica templates of rice husk. Microporous Mesoporous Mater., 2009, 121, P. 34–40.

24. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem., 2015, 87, P. 1051–1069.

25. Kruk M., Jaroniec M., Gadkaree K.P. Nitrogen Adsorption Studies of Novel Synthetic Active Carbons. J. Colloid Interface Sci., 1997, 192, P. 250–256.

26. Liu Y., Yang X., Lei F., Xiao Y. Synergistic Effect of Alkali Metals in Coal and Introduced CaO during Steam Gasification. J. Therm. Sci., 2020, 29, P. 1627–1637.

27. Zhao M., Memon M.Z., Ji G., Yang X., Vuppaladadiyam A.K., Song Y., Raheem A., Li J., Wang W., Zhou H. Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production. Renew. Energy, 2020, 148, P. 168–175.

28. Zhu Y., Li W., Huang Y., Zheng Y., Wang D., Ye Y., Li S., Zheng Z. Catalytic pyrolysis of cellulose over solid acidic catalysts: an environment-friendly method for furan production. Biomass Convers. Biorefinery, 2020, 11, P. 2695–2702.

29. Sosnin G.A., Yazykov N.A., Yeletsky P.M., Zaikina O.O., Yakovlev V.A. Molybdenum recovery from spent Mo-based dispersed catalyst accumulated in heavy oil steam cracking coke. Fuel Process. Technol., 2020, 208, 106520.

30. Sing K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem., 1985, 57, P. 603–619.

31. Jeromenok J., Weber J. Restricted Access: On the Nature of Adsorption/Desorption Hysteresis in Amorphous, Microporous Polymeric Materials. Langmuir, 2013, 29, P. 12982–12989.

32. Hanna R. Infrared Absorption Spectrum of Silicon Dioxide. J. Am. Ceram. Soc., 1965, 48, P. 595–599.

33. Davarcioglu B., Spectral characterization of non-clay minerals found in the clays (Central Anatolian-Turkey). Int. J. Phys. Sci., 2011, 6, P. 511–522.

34. Mozgawa W., Kro´l M., Dyczek J., Deja J. Investigation of the coal fly ashes using IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2014, 132, P. 889–894.

35. Coates J. Interpretation of Infrared Spectra, A Practical Approach, in: Encycl. Anal. Chem., John Wiley & Sons, Ltd, Chichester, UK, 2006.

36. Ibrahim D.M., El-Hemaly S.A., Abdel-Kerim F.M. Study of rice-husk ash silica by infrared spectroscopy. Thermochim. Acta, 1980, 37, P. 307–314.

37. Sankar S., Sharma S.K., Kaur N., Lee B., Kim D.Y., Lee S., Jung H. Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method. Ceram. Int., 2016, 42, P. 4875–4885.

38. Yin Y., Yin J., Zhang W., Tian H., Hu Z., Ruan M., Xu H., Liu L., Yan X., Chen D. FT-IR and micro-Raman spectroscopic characterization of minerals in high-calcium coal ashes. J. Energy Inst., 2018, 91, P. 389–396.

39. Gunasekaran S., Anbalagan G., Pandi S. Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc., 2006, 37, P. 892–899.

40. Mozgawa W., Król M., Dyczek J., Deja J. Investigation of the coal fly ashes using IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2014, 132, P. 889–894.

41. Eletskii P.M., Yakovlev V.A., Fenelonov V.B., Parmon V.N. Texture and adsorptive properties of microporous amorphous carbon materials prepared by the chemical activation of carbonized high-ash biomass. Kinet. Catal., 2008, 49, P. 708–719.

42. He D., Ou Z., Qin C., Deng T., Yin J., Pu G. Understanding the catalytic acceleration effect of steam on CaCO3 decomposition by density function theory. Chem. Eng. J., 2020, 379, 122348.

43. Georgiou E., Mihajlović M., Petrović J., Anastopoulos I., Dosche C., Pashalidis I., Kalderis D. Single-stage production of miscanthus hydrochar at low severity conditions and application as adsorbent of copper and ammonium ions. Bioresour. Technol., 2021, 337, 125458.

44. Yao X., Ji L., Guo J., Ge S., Lu W., Chen Y., Cai L., Wang Y., Song W. An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. Bioresour. Technol., 2020, 318, 124082.

45. Cuong Nguyen X., Thanh Huyen Nguyen T., Hong Chuong Nguyen T., Van Le Q., Yen Binh Vo T., Cuc Phuong Tran T., Duong La D., Kumar G., Khanh Nguyen V., Chang S.W., Jin Chung W., Duc Nguyen D. Sustainable carbonaceous biochar adsorbents derived from agro-wastes and invasive plants for cation dye adsorption from water. Chemosphere, 2021, 282, 131009.

46. Larichev Y.V., Eletskii P.M., Tuzikov F.V., Yakovlev V.A. Porous carbon-silica composites and carbon materials from rice husk: Production technology, texture, and dispersity. Catal. Ind., 2013, 5, P. 350–357.

47. Eletskii P.M., Yakovlev V.A., Kaichev V.V., Yazykov N.A., Parmon V.N. Texture and surface properties of carbon-silica nanocomposite materials prepared by the carbonization of high-ash vegetable raw materials in a fluidized catalyst bed. Kinet. Catal., 2008, 49, P. 305–312.

48. Meng Z., Xu T., Huang S., Ge H., Mu W., Lin Z. Effects of competitive adsorption with Ni(II) and Cu(II) on the adsorption of Cd(II) by modified biochar co-aged with acidic soil. Chemosphere, 2022, 293, 133621.

49. Shahtalebi A., Sarrafzadeh M.H., McKay G. An adsorption diffusion model for removal of copper (II) from aqueous solution by pyrolytic tyre char. Desalin. Water Treat., 2013, 51, P. 5664–5673.

50. Liu Z., Zhang F.-S. Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination, 2011, 267, P. 101–106.

51. Mahdi Z., Yu Q.J., El Hanandeh A. Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar. J. Environ. Chem. Eng., 2018, 6, P. 1171–1181.

52. Belgacem A., Brahim I.O., Belmedani M., Hadoun H. Removal of Methyl Green Dye from Aqueous Solutions Using Activated Carbon Derived from Cryogenic Crushed Waste Tires. Iran. J. Chem. Chem. Eng., 2022, 41, P. 207–219.

53. Tanaydin M.K., Goksu A. Optimization of the adsorption of methyl green dye on almond shells using central composite design. Desalin. Water Treat., 2021, 227, P. 425–439.


Review

For citations:


Yeletsky P.M., Yazykov N.A., Dubinin Yu.V., Borodaevskiy M.M., Selishcheva S.A., Yakovlev V.A. Green approach to production of porous char adsorbents via oxidative carbonization in fluidized catalyst bed. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(2):285-299. https://doi.org/10.17586/2220-8054-2024-15-2-285-299

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)