«Зеленый» подход к производству пористых углеродсодержащих адсорбентов путем окислительной карбонизации в кипящем слое катализатора
https://doi.org/10.17586/2220-8054-2024-15-2-285-299
Аннотация
Разработан экологичный и энергоэффективный подход к получению пористых углерод-минеральных адорбентов из отходов сельского хозяйства (рисовая шелуха, пшеничные отруби) и осадочного углеродсодержащего сырья (высокозольный торф, уголь). Он основан на неполном сжигании в реакторе с кипящим слоем катализатора глубокого окисления при пониженных температурах (465 – 600 °С). Данный подход позволяет получать пористые углеродсодержащие материалы с повышенным содержанием минеральной компоненты, состав и содержание которой зависит от используемого сырья, а также газообразные продукты полного окисления. Было обнаружено, что полученные адсорбенты обладают развитой пористой структурой с удельной поверхностью по БЭТ ~50 – 170 м2·г-1, объемом пор 0,05 – 0,17 мл·г-1, зольностью 16 – 79 мас. %. Данные материалы были дополнительно исследованы методами ТГА и ИК-спектроскопии. Их тестирование в качестве адсорбентов ионов тяжелых металлов (на примере Cu2+) и органических красителей (на примере метилового зеленого) показало, что их адсорбционная способность сравнима с адсорбционной способностью биоуглей, полученных традиционными пиролитическими методами.
Об авторах
П. М. ЕлецкийРоссия
Н. А. Языков
Россия
Ю. В. Дубинин
Россия
М. М. Бородаевский
Россия
С. А. Селищева
Россия
В. А. Яковлев
Россия
Список литературы
1. Jeguirim M., Limousy L. Biomass Chars: Elaboration, Characterization and Applications, MDPI, Basel, 2018.
2. Xiang W., Zhang X., Chen J., Zou W., He F., Hu X., Tsang D.C.W., Ok Y.S., Gao B. Biochar technology in wastewater treatment: A critical review. Chemosphere, 2020, 252, 126539.
3. Suárez-Almeida M., Gómez-Barea A., Ghoniem A.F., Pfeifer C. Solar gasification of biomass in a dual fluidized bed. Chem. Eng. J., 2021, 406, 126665.
4. Heidari M., Salaudeen S., Arku P., Acharya B., Tasnim S., Dutta A. Development of a mathematical model for hydrothermal carbonization of biomass: Comparison of experimental measurements with model predictions. Energy, 2021, 214, 119020.
5. Liu Y., Rokni E., Yang R., Ren X., Sun R., Levendis Y.A. Torrefaction of corn straw in oxygen and carbon dioxide containing gases: Mass/energy yields and evolution of gaseous species. Fuel, 2021, 285, 119044.
6. Mortari D.A., Perondi D., Rossi G.B., Bonato J.L., Godinho M., Pereira F.M. The influence of water-soluble inorganic matter on combustion of grape pomace and its chars produced by slow and fast pyrolysis. Fuel, 2021, 284, 118880.
7. Braghiroli F.L., Bouafif H., Neculita C.M., Koubaa A. Influence of Pyro-Gasification and Activation Conditions on the Porosity of Activated Biochars: A Literature Review. Waste and Biomass Valorization, 2020, 11, P. 5079–5098.
8. Li Z., Zhong Z., Zhang B., Wang W., Zhao H., Seufitelli G.V.S., Resende F.L.P. Microwave-assisted catalytic fast pyrolysis of rice husk over a hierarchical HZSM-5/MCM-41 catalyst prepared by organic base alkaline solutions. Sci. Total Environ., 2021, 750, 141215.
9. Pawar A., Panwar N.L., Salvi B.L. Comprehensive review on pyrolytic oil production, upgrading and its utilization. J. Mater. Cycles Waste Manag., 2020, 22, P. 1712–1722.
10. Iannello S., Morrin S., Materazzi M. Fluidised Bed Reactors for the Thermochemical Conversion of Biomass and Waste. KONA Powder Part. J., 2020, 37, P. 114–131.
11. Karmee S.K., Kumari G., Soni B. Pilot scale oxidative fast pyrolysis of sawdust in a fluidized bed reactor: A biorefinery approach. Bioresour. Technol., 2020, 318, 124071.
12. Mullen C.A., Boateng A.A. Accumulation of Inorganic Impurities on HZSM-5 Zeolites during Catalytic Fast Pyrolysis of Switchgrass. Ind. Eng. Chem. Res., 2013, 52, P. 17156–17161.
13. Yazykov N.A., Simonov A.D., Dubinin Y.V., Zaikina O.O. Catalytic Co-Combustion of Peat and Anthracite in a Fluidized Bed. Catal. Ind., 2019, 11, P. 342–348.
14. Simonov A.D., Fedorov N.A., Dubinin Y.V., Yazykov N.A., Yakovlev V.A., Parmon V.N. Catalytic heat-generating units for industrial heating. Catal. Ind., 2013, 5, P. 42–49.
15. Yazykov N.A., Simonov A.D., Aflyatunov A.S., Dubinin Y.V., Selischeva S.A., Yakovlev V.A., Stepanenko A.I. Combustion of Shale Heavy Coal-Tar Products in a Boiling Layer of a Catalyst. Chem. Sustain. Dev., 2017, 25, P. 313–321.
16. Yazykov N.A., Dubinin Y.V., Simonov A.D., Reshetnikov S.I., Yakovlev V.A. Features of sulfur oils catalytic combustion in fluidized bed. Chem. Eng. J., 2016, 283, P. 649–655.
17. Dubinin Y.V., Yazykov N.A., Reshetnikov S.I., Yakovlev V.A. Catalytic combustion of sulfur-containing liquid fuels in the fluidized bed: Experiment and modeling. J. Ind. Eng. Chem., 2021, 93, P. 163–169.
18. Fedorov A.V., Dubinin Y.V., Yeletsky P.M., Fedorov I.A., Shelest S.N., Yakovlev V.A. Combustion of sewage sludge in a fluidized bed of catalyst: ASPEN PLUS model. J. Hazard. Mater., 2021, 405, 124196.
19. Nikitin D.S., Shanenkov I.I., Yeletsky P.M., Nassyrbayev A., Tabakaev R.B., Shanenkova Y.L., Ryskulov D.N., Tsimmerman A.I., Sivkov A.A. Agricultural waste derived silicon carbide composite nanopowders as efficient coelectrocatalysts for water splitting. J. Clean. Prod., 2024, 442, 140890.
20. Yeletsky P.M., Dubinin Y.V., Yazykov N.A., Tabakaev R.B., Okotrub K.A., Yakovlev V.A. Conversion of natural feedstocks to porous carbons via carbonization in fluidized catalyst bed followed by leaching the feedstock mineral template phase: A comparison of biomass and sedimentary raw materials. Fuel Process. Technol., 2022, 226, 107076.
21. Tabakaev R., Ibraeva K., Kan V., Dubinin Y., Rudmin M., Yazykov N., Zavorin A. The effect of co-combustion of waste from flour milling and highly mineralized peat on sintering of the ash residue. Energy, 2020, 196, 117157.
22. Tabakaev R., Astafev A., Dubinin Y., Yazykov N., Yakovlev V. Evaluation of Autothermal Peat Pyrolysis Realization for Fuel Processing Technologies. Waste and Biomass Valorization, 2019, 10, P. 1021–1027.
23. Yeletsky P.M., Yakovlev V.A., Mel’gunov M.S., Parmon V.N. Synthesis of mesoporous carbons by leaching out natural silica templates of rice husk. Microporous Mesoporous Mater., 2009, 121, P. 34–40.
24. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem., 2015, 87, P. 1051–1069.
25. Kruk M., Jaroniec M., Gadkaree K.P. Nitrogen Adsorption Studies of Novel Synthetic Active Carbons. J. Colloid Interface Sci., 1997, 192, P. 250–256.
26. Liu Y., Yang X., Lei F., Xiao Y. Synergistic Effect of Alkali Metals in Coal and Introduced CaO during Steam Gasification. J. Therm. Sci., 2020, 29, P. 1627–1637.
27. Zhao M., Memon M.Z., Ji G., Yang X., Vuppaladadiyam A.K., Song Y., Raheem A., Li J., Wang W., Zhou H. Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production. Renew. Energy, 2020, 148, P. 168–175.
28. Zhu Y., Li W., Huang Y., Zheng Y., Wang D., Ye Y., Li S., Zheng Z. Catalytic pyrolysis of cellulose over solid acidic catalysts: an environment-friendly method for furan production. Biomass Convers. Biorefinery, 2020, 11, P. 2695–2702.
29. Sosnin G.A., Yazykov N.A., Yeletsky P.M., Zaikina O.O., Yakovlev V.A. Molybdenum recovery from spent Mo-based dispersed catalyst accumulated in heavy oil steam cracking coke. Fuel Process. Technol., 2020, 208, 106520.
30. Sing K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem., 1985, 57, P. 603–619.
31. Jeromenok J., Weber J. Restricted Access: On the Nature of Adsorption/Desorption Hysteresis in Amorphous, Microporous Polymeric Materials. Langmuir, 2013, 29, P. 12982–12989.
32. Hanna R. Infrared Absorption Spectrum of Silicon Dioxide. J. Am. Ceram. Soc., 1965, 48, P. 595–599.
33. Davarcioglu B., Spectral characterization of non-clay minerals found in the clays (Central Anatolian-Turkey). Int. J. Phys. Sci., 2011, 6, P. 511–522.
34. Mozgawa W., Kro´l M., Dyczek J., Deja J. Investigation of the coal fly ashes using IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2014, 132, P. 889–894.
35. Coates J. Interpretation of Infrared Spectra, A Practical Approach, in: Encycl. Anal. Chem., John Wiley & Sons, Ltd, Chichester, UK, 2006.
36. Ibrahim D.M., El-Hemaly S.A., Abdel-Kerim F.M. Study of rice-husk ash silica by infrared spectroscopy. Thermochim. Acta, 1980, 37, P. 307–314.
37. Sankar S., Sharma S.K., Kaur N., Lee B., Kim D.Y., Lee S., Jung H. Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method. Ceram. Int., 2016, 42, P. 4875–4885.
38. Yin Y., Yin J., Zhang W., Tian H., Hu Z., Ruan M., Xu H., Liu L., Yan X., Chen D. FT-IR and micro-Raman spectroscopic characterization of minerals in high-calcium coal ashes. J. Energy Inst., 2018, 91, P. 389–396.
39. Gunasekaran S., Anbalagan G., Pandi S. Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc., 2006, 37, P. 892–899.
40. Mozgawa W., Król M., Dyczek J., Deja J. Investigation of the coal fly ashes using IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2014, 132, P. 889–894.
41. Eletskii P.M., Yakovlev V.A., Fenelonov V.B., Parmon V.N. Texture and adsorptive properties of microporous amorphous carbon materials prepared by the chemical activation of carbonized high-ash biomass. Kinet. Catal., 2008, 49, P. 708–719.
42. He D., Ou Z., Qin C., Deng T., Yin J., Pu G. Understanding the catalytic acceleration effect of steam on CaCO3 decomposition by density function theory. Chem. Eng. J., 2020, 379, 122348.
43. Georgiou E., Mihajlović M., Petrović J., Anastopoulos I., Dosche C., Pashalidis I., Kalderis D. Single-stage production of miscanthus hydrochar at low severity conditions and application as adsorbent of copper and ammonium ions. Bioresour. Technol., 2021, 337, 125458.
44. Yao X., Ji L., Guo J., Ge S., Lu W., Chen Y., Cai L., Wang Y., Song W. An abundant porous biochar material derived from wakame (Undaria pinnatifida) with high adsorption performance for three organic dyes. Bioresour. Technol., 2020, 318, 124082.
45. Cuong Nguyen X., Thanh Huyen Nguyen T., Hong Chuong Nguyen T., Van Le Q., Yen Binh Vo T., Cuc Phuong Tran T., Duong La D., Kumar G., Khanh Nguyen V., Chang S.W., Jin Chung W., Duc Nguyen D. Sustainable carbonaceous biochar adsorbents derived from agro-wastes and invasive plants for cation dye adsorption from water. Chemosphere, 2021, 282, 131009.
46. Larichev Y.V., Eletskii P.M., Tuzikov F.V., Yakovlev V.A. Porous carbon-silica composites and carbon materials from rice husk: Production technology, texture, and dispersity. Catal. Ind., 2013, 5, P. 350–357.
47. Eletskii P.M., Yakovlev V.A., Kaichev V.V., Yazykov N.A., Parmon V.N. Texture and surface properties of carbon-silica nanocomposite materials prepared by the carbonization of high-ash vegetable raw materials in a fluidized catalyst bed. Kinet. Catal., 2008, 49, P. 305–312.
48. Meng Z., Xu T., Huang S., Ge H., Mu W., Lin Z. Effects of competitive adsorption with Ni(II) and Cu(II) on the adsorption of Cd(II) by modified biochar co-aged with acidic soil. Chemosphere, 2022, 293, 133621.
49. Shahtalebi A., Sarrafzadeh M.H., McKay G. An adsorption diffusion model for removal of copper (II) from aqueous solution by pyrolytic tyre char. Desalin. Water Treat., 2013, 51, P. 5664–5673.
50. Liu Z., Zhang F.-S. Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination, 2011, 267, P. 101–106.
51. Mahdi Z., Yu Q.J., El Hanandeh A. Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar. J. Environ. Chem. Eng., 2018, 6, P. 1171–1181.
52. Belgacem A., Brahim I.O., Belmedani M., Hadoun H. Removal of Methyl Green Dye from Aqueous Solutions Using Activated Carbon Derived from Cryogenic Crushed Waste Tires. Iran. J. Chem. Chem. Eng., 2022, 41, P. 207–219.
53. Tanaydin M.K., Goksu A. Optimization of the adsorption of methyl green dye on almond shells using central composite design. Desalin. Water Treat., 2021, 227, P. 425–439.
Рецензия
Для цитирования:
Елецкий П.М., Языков Н.А., Дубинин Ю.В., Бородаевский М.М., Селищева С.А., Яковлев В.А. «Зеленый» подход к производству пористых углеродсодержащих адсорбентов путем окислительной карбонизации в кипящем слое катализатора. Наносистемы: физика, химия, математика. 2024;15(2):285-299. https://doi.org/10.17586/2220-8054-2024-15-2-285-299
For citation:
Yeletsky P.M., Yazykov N.A., Dubinin Yu.V., Borodaevskiy M.M., Selishcheva S.A., Yakovlev V.A. Green approach to production of porous char adsorbents via oxidative carbonization in fluidized catalyst bed. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(2):285-299. https://doi.org/10.17586/2220-8054-2024-15-2-285-299