Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Nucleation of magnetic skyrmions at a notch

https://doi.org/10.17586/2220-8054-2024-15-2-192-200

Abstract

Magnetic skyrmions are considered promising candidates for coding bits of information in racetrack memory devices. Information recording in such devices is assumed to occur by creating skyrmions. This work is devoted to finding solutions to make this process as energy-efficient as possible. One of the factors influencing the creation of skyrmions is the geometry of the track on which recording takes place. We study the influence of the shape and size of track boundary notches on the energy barriers of skyrmion nucleation. We show that skyrmions generation is facilitated by the presence of irregularities at the track boundary and the best solution is a deep narrow notch. On the other hand the skyrmion nucleation rate is smaller for smooth boundaries and skyrmions generation can be suppressed by their interaction with the track boundary, if notch size is smaller than the skyrmion radius. These results can be used in development of future memory devices based on skyrmions.

About the Authors

M. N. Potkina
Infochemistry Scientific Center, ITMO University
Russian Federation

Maria N. Potkina.

197101 St. Petersburg



I. S. Lobanov
Faculty of Physics, ITMO University
Russian Federation

Igor S. Lobanov.

197101 St. Petersburg



References

1. Parkin S. S. P., Hayashi M., Thomas L. Magnetic domain-wall racetrack memory. Science, 2008, 320, P. 190–194.

2. Parkin S. S. P., Yang S.-H. Memory on the racetrack. Nat. Nanotechnol., 2015, 10, P. 195–198.

3. Tomasello R., Martinez E., Zivieri R., et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep., 2014, 4, 6784.

4. Kang W., Huang Y., Zhang X., et al. Skyrmion-electronics: an overview and outlook. Proceedings of the IEEE, 2016, 104(10), P. 2040–2061.

5. Stier M., Strobel R., Krause S., et al. Role of impurity clusters for the current-driven motion of magnetic skyrmions. Phys. Rev. B, 2021, 103, P. 054420.

6. Zhu H., Xiang G., Feng Y., et al. Dynamics of elliptical magnetic skyrmion in defective racetrack. Nanomater., 2024, 14(3), P. 312.

7. Potkina M.N., Lobanov I.S., Uzdin V.M. Nonmagnetic impurities in skyrmion racetrack memory. Nanosystems: phys., chem., math., 2020, 11 (6), P. 628–635.

8. Reichhardt C., Reichhardt C. J. O., Milosevic M. V. Statics and dynamics of skyrmions interacting with disorder and nanostructures. Rev. Mod. Phys., 2022, 94, P. 035005.

9. Boulle O., Vogel J., Yang H., et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol., 2016, 11, P. 449–454.

10. Heinze S., von Bergmann K., Menzel M., et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys., 2011, 7, P. 713–718.

11. Bessarab P. F., Mu¨ller G. P., Lobanov I. S., et al. Lifetime of racetrack skyrmions. Sci. Rep., 2018, 8, P. 3433.

12. Hagemeister J., Romming N., Bergmann K. V., Vedmedenko E. Y., Wiesendanger R. Stability of single skyrmionic bits. Nat. Commun., 2015, 6, P. 8455.

13. Koshibae W., Nagaosa N. Creation of skyrmions and antiskyrmions by local heating. Nat. Commun., 2014, 8, P. 5148.

14. Zhou Y., Iacocca E., Awad A. A., et al. Dynamically stabilized magnetic skyrmions. Nat. Commun., 2015, 6, 8193.

15. Romming N., Hanneken C., Menzel M., et al. Writing and deleting single magnetic skyrmions. Science, 2013, 341, P. 636–639.

16. Sampaio J., Cros V., Rohart S., Thiaville A, Fert A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol., 2013, 8, P. 839–844.

17. Jiang W., Upadhyaya P., Zhang W., et al. Blowing magnetic skyrmion bubbles. Science, 2015, 349, P. 283–286.

18. Uzdin V.M., Potkina M.N., Lobanov I.S., Bessarab P.F., Jo´nsson H. The effect of confinement and defects on the thermal stability of skyrmions. Physica B: Condensed Matter., 2018, 549, P. 6–9.

19. Potkina M.N., Lobanov I.S., Uzdin V.M. Fine energy structure of a magnetic skyrmion localized on a nonmagnetic impurity in an external magnetic field. Physics of Complex Systems, 2020, 1 (4), P. 165–168.

20. Uzdin V.M., Potkina M.N., Lobanov I.S., Bessarab P.F., Jo´nsson H. Energy surface and lifetime of magnetic skyrmions. J. Magn. Magn. Mater., 2018, 459, P. 236–240.

21. Hanneken C., Kubetzka A., von Bergmann K., Wiesendanger R. Pinning and movement of individual nanoscale magnetic skyrmions via defects. New J. Phys., 2016, 18(5), P. 055009.

22. Potkina M. N., Lobanov I. S., Uzdin V. M. Nucleation and collapse of magnetic topological solitons in external magnetic field. Nanosystems: Phys. Chem. Math., 2023, 14 (2), P. 216.

23. Wang W., Song D., Wei W., et al. Electrical manipulation of skyrmions in a chiral magnet. Nat. Commun., 2022, 13, 1593.

24. Yu X. Z., Morikawa D., Nakajima K., Shibata K., Kanazawa N., Arima T., Nagaosa N., Tokura Y. Motion tracking of 80-nm-size skyrmions upon directional current injections. Sci. Adv., 2020, 6, P. eaaz9744.

25. Twitchett-Harrison A. C., Loudon J. C., Pepper R. A., Birch M. T., Fangohr H., Midgley P. A., Balakrishnan G., Hatton P. D. Confinement of skyrmions in nanoscale FeGe device-like structures. ACS Appl. Electron. Mater., 2022, 4 (9), P. 4427–4437.

26. Büttner F., Lemesh I., Schneider M., et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nature Nanotech. 2017, 12, P. 1040–1044.

27. Iwasaki J., Mochizuki M., Nagaosa N. Current-induced skyrmion dynamics in constricted geometries. Nature Nanotech., 2013, 8, P. 742–747.

28. Koshibae W., Kaneko Y., Iwasaki J., Kawasaki M., Tokura Y., Nagaosa N. Memory functions of magnetic skyrmions. Jpn J. Appl. Phys., 2015, 54, P. 053001.

29. Behera A. K., Murapaka C., Mallick S., Singh B. B., Bedanta S. Skyrmion racetrack memory with an antidot. J. Phys. D: Appl. Phys., 2021, 54, P. 025001.

30. Suess D., Vogler C., Bruckner F., Heistracher P., Slanovc F., Abert C. Spin torque efficiency and analytic error rate estimates of skyrmion. Sci. Rep., 2019, 9, P. 4827.

31. Dutta S., Nikonov D. E., Bourianoff G., Manipatruni S., Young I. A., Naeemi A. Skyrmion nucleation via localized spin current injection in confined nanowire geometry in low chirality magnetic materials. 2018. arXiv: https://arxiv.org/abs/1801.10525.

32. Xu M., Zhang J., Meng D., Zhang Z., Jiang G. The influence of introducing holes on the generation of skyrmions in nanofilms. Phys. Lett. A., 2022, 433. P. 128034.

33. Fert A., Cros V., Sampaio J. Skyrmions on the track. Nat. Nanotechnol., 2013, 8 (3), 152.

34. Jiang W., Zhang W.; Yu G., et al. Mobile Ne´el skyrmions at room temperature: status and future. AIP Advances, 2016, 6, P. 055602.

35. Kang W., Huang Y., Zheng C. et al. Voltage controlled magnetic skyrmion motion for racetrack memory. Sci Rep, 2016, 6, 23164. https://doi.org/10.1038/srep23164

36. Morshed M. G., Vakili H., Ghosh A. W. Positional stability of skyrmions in a racetrack memory with notched geometry. Phys. Rev. Applied, 2022, 17, P. 064019.

37. Belrhazi H., El Hafidi M. Nucleation and manipulation of single skyrmions using spin-polarized currents in antiferromagnetic skyrmion-based racetrack memories. Sci. Rep., 2022, 12, 15225.

38. Weinan E., Ren W., Vanden-Eijnden E. String method for the study of rare events. Phys. Rev. B, 2002, 66, P. 052301.


Review

For citations:


Potkina M.N., Lobanov I.S. Nucleation of magnetic skyrmions at a notch. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(2):192-200. https://doi.org/10.17586/2220-8054-2024-15-2-192-200

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)