Equilibrium of intrinsic and impurity point defects in Ca-doped Sm2Zr2O7
https://doi.org/10.17586/2220-8054-2024-15-1-65-79
Abstract
In this work, a doping strategy was used to achieve a good conductivity in samarium zirconate which crystallizes in the pyrochlore. The production of nanopowders made it possible to form high-density ceramics with an optimal microstructure. It is shown that intrinsic and impurity defects coexist in Sm2−xCaxZr2O7−δ, impairing ion transport at high doping levels. Despite this, Sm1.95Ca0.05Zr2O7−δ maintains low activation energy of the parent and has good ionic conductivity (10−3 S·cm−1 at 600 ◦C) which is one of the largest among oxide pyrochlores. It has been shown to have a good chemical stability. The material has a thermal expansion coefficient (TEC) of 12 ppm K−1 which is higher than YSZ and provides better compatibility with electrode materials. The above makes it possible to successfully use it as a highly stable oxygen electrolyte or an intermediate thin layer at the electrolyte-electrode interface in electrochemical devices.
Keywords
About the Authors
V. A. VorotnikovRussian Federation
Vladimir A. Vorotnikov
Kirov, 610000; Novosibirsk, 630090
S. A. Belyakov
Russian Federation
Semyon A. Belyakov
Yekaterinburg 620137
A. V. Ivanov
Russian Federation
Alexey V. Ivanov
Kirov 610000; Novosibirsk, 630090
Yu. V. Novikova
Russian Federation
Yulia V. Novikova
Yekaterinburg 620137
A. Yu. Stroeva
Russian Federation
Anna Yu. Stroeva
Kirov 610000
V. V. Grebenev
Russian Federation
Vadim V. Grebenev
Moscow 119333
D. N. Khmelenin
Russian Federation
Dmitry N. Khmelenin
Moscow 119333
O. V. Emelyanova
Russian Federation
Olga V. Emelyanova
Moscow 119333
M. S. Plekhanov
Germany
Maksim S. Plekhanov
Aachen 52066
A. V. Kuzmin
Russian Federation
Anton V. Kuzmin
Kirov 610000; Novosibirsk, 630090
References
1. Wu J., Wei X., Padture N.P., Klemens P.G., Gell M., Garcia E., Miranzo P., Osendi M.I. Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications. J. Am. Ceram. Soc.., 2002, 85 (12), P. 3031–3035.
2. Wan C.L., Pan W., Xu Q., Qin Y.X., Wang J.D., Qu Z.X., Fang M.H. Effect of point defects on the thermal transport properties of (LaxGd1−x)2Zr2O7: Experiment and theoretical model. Phys. Rev. B, 2006, 74 (14), 144109.
3. Shin D., Shin H.G., Lee H., Thermodynamic investigation of the (La1−xGdx)2Zr2O7 pyrochlore phase. Calphad, 2014, 45, P. 27–32.
4. Schmitt M.P., Rai A.K., Bhattacharya R., Zhu D., Wolfe D.E. Multilayer thermal barrier coating (TBC) architectures utilizing rare earth doped YSZ and rare earth pyrochlores. Surf. Coat. Technol., 2014, 251, P. 56–63.
5. Zhang J., Guo X., Jung Y.G., Li L., Knapp J. Lanthanum zirconate based thermal barrier coatings: A review. Surf. Coat. Technol., 2017, 323, P. 18–29.
6. Mathanbabu M., Thirumalaikumarasamy D., Thirumal P., Ashokkumar M. Study on thermal, mechanical, microstructural properties and failure analyses of lanthanum zirconate based thermal barrier coatings: A review. Mater. Today Proc., 2021, 46 (17), P. 7948–7954.
7. Anokhina I.A., Animitsa I.E., Buzina A.F., Nokhrin S.S., Zaikov Y.P., Voronin V.I., Vykhodets, V.B. Kurennykh, T.E. Kazakova, V.N. Electrical properties of Li+-substituted solid solutions based on Gd2Zr2O7. Russ. J. Phys. Chem. A, 2021, 95, P. 2426–2431.
8. Anokhina I.A., Animitsa I.E., Voronin V.I., Vykhodets V.B., Kurennykh T.E., Molchanova N.G., Vylkov A.I., Dedyukhin A.E., Zaikov Y.P. The structure and electrical properties of lithium doped pyrochlore Gd2Zr2O7. Ceram. Int., 2021, 47, P. 1949–1961.
9. Anokhina I., Pavlenko O., Proskurnina N., Dedyukhin A., Animitsa I. The Gd2−xMgxZr2O7−x/2 Solid Solution: Ionic Conductivity and Chemical Stability in the Melt of LiCl–Li2O. Materials, 2022, 15, 4079.
10. Sickafus K.E., Mimervini L., Grimes R.W., Valdez J.A., Ishimaru M., Li F., McClellan K.J. Hartmann, T. Radiation tolerance of complex oxides. Science, 2000, 289 (5480), P. 748–751.
11. Wang S.X., Begg B.D., Wang L.M., Ewing R.C., Weber W.J., Govidan Kutty K.V. Radiation stability of gadolinium zirconate: a waste form for plutonium disposition, J. Mater. Res., 1999, 14, P. 4470–4473.
12. Wuensch B.J., Eberman K.W., Heremans C., Ku E.M., Onnerud P., Yeo E.M.E., Haile S.M., Stalick J.K., Jorgensen J.D. Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature. Solid State Ion, 2000, 129, P. 111–133.
13. Anantharaman A.P., Dasari H.P. Potential of pyrochlore structure materials in solid oxide fuel cell applications. Ceram. Int., 2021, 47, P. 4367– 4388.
14. Mandal B.P., Tyagi A.K. Ionic conductivity in materials with a pyrochlore structure. In Pyrochlore Ceramics: Properties, Processing, and Applications, Elsevier Series on Advanced Ceramic Materials, Chowdhury A., Ed., Elsevier: Amsterdam, Netherlands, 2022, 7, P. 277–294.
15. Van Dijk M.P., Burggraaf A.J., Cormack A.N., Catlow C.R.A. Defect structures and migration mechanisms in oxide pyrochlores. Solid State Ion, 1985, 17 (2), P. 159–167.
16. Tabira Y., Withers R., Thompson J., Schmid S. Structured diffuse scattering as an indicator of inherent cristobalite-like displacive flexibility in the rare earth zirconate pyrochlore LaδZr1−δO2−δ/2, 0.49 < δ < 0.51. J. Solid State Chem., 1999, 142, P. 393–399.
17. Whittle K.R., Cranswick L.M.D., Redfern S.A.T., Swainson I.P., Lumpkin G.R. Lanthanum pyrochlores and the effect of yttrium addition in the systems La2−xYxZr2O7 and La2−xYxHf2O7. J. Solid State Chem., 2009, 182, P. 442–450.
18. Blanchard P.E.R., Clements R., Kennedy B.J., Ling C.D., Reynolds E., Avdeev M., Stampfl A.P.J., Zhang Z., Jang L.Y. Does local disorder occur in the pyrochlore zirconates? Inorg. Chem., 2012, 51, P. 13237–13244.
19. Hagiwara T., Yamamura H., Nishino H. Relationship between oxide-ion conductivity and ordering of oxygen vacancy in the Ln2Zr2O7 (Ln = La, Nd, Eu) system having a pyrochlore composition. IOP Conf. Series: Materials Science and Engineering, 2011, 18, 132003.
20. Van Dijk M.P., de Vries K.J., Burggraaf A.J. Oxygen ion and mixed conductivity in compounds with the fluorite and pyrochlore structure. Solid State Ion, 1983, 9&10, P. 913–920.
21. Wilde P.J., Catlow C.R.A. Defects and diffusion in pyrochlore structured oxides. Solid State Ion, 1998, 112, P. 173–183.
22. Pirzada M., Grimes R.W., Minervini L., Maguire J.F., Sickafus K.E. Oxygen migration in A2B2O7 pyrochlores. Solid State Ion, 2001, 140, P. 201–208.
23. Nyman B.J., Bjo¨rketun M.E., Wahnstro¨m G. Substitutional doping and oxygen vacancies in La2Zr2O7 pyrochlore oxide. Solid State Ion, 2011, 189, P. 19–28.
24. Li Y., Kowalski P.M. Energetics of defects formation and oxygen migration in pyrochlore compounds from first principles calculations, J. Nucl. Mater., 2018, 505, P. 255–261.
25. Minervini L., Grimes R.W., Sickafus K.E. Disorder in pyrochlore oxides. J. Am. Ceram. Soc., 2000, 83, P. 1873–1878.
26. Shlyakhtina A.V., Savvin S.N., Levchenko A.V., Knotko A.V., Fedtke P., Busch A., Barfels T., Wienecke M., Shcherbakova L.G. Study of bulk and grain-boundary conductivity of Ln2+xHf2−xO7−δ (Ln = Sm–Gd, x = 0, 0.096) pyrochlores. J. Electroceram., 2010, 24, P. 300–307.
27. Li Y., Kowalski P.M., Beridze G., Birnie A.R., Finkeldei S., Bosbach D. Defect formation energies in A2B2O7 pyrochlores. Scr. Mater., 2015, 107, P. 18–21.
28. Marlton F.P., Zhang Z., Zhang Y., Proffen T.E., Ling C.D., Kennedy B.J. Lattice Disorder and Oxygen Migration Pathways in Pyrochlore and Defect-Fluorite Oxides. Chem. Mater., 2021, 33, P. 1407–1415.
29. Zhang F.X., Lang M., Ewing R.C. Atomic disorder in Gd2Zr2O7 pyrochlore. Appl. Phys. Lett., 2015, 106, 191902.
30. D´ıaz-Guille´n J.A., D´ıaz-Guille´n M.R., Padmasree K.P., Fuentes A.F., Santamar´ıa J., Leo´n C. High ionic conductivity in the pyrochlore-type Gd2−yLayZr2O7 solid solution (0 ≤ y ≤ 1). Solid State Ion, 2008, 179, P. 2160–2164.
31. Mandal B.P., Deshpande S.K., Tyagi A.K. Ionic conductivity enhancement in Gd2Zr2O7 pyrochlore by Nd doping. J. Mater. Res., 2008, 23, P. 911–916.
32. Moreno K.J., Fuentes A.F., Garc´ıa-Barriocanal J., Leo´n C., Santamar´ıa J. Mechanochemical synthesis and ionic conductivity in the Gd2(Sn1−yZry)2O7 (0 ≤ y ≤ 1) solid solution. J. Solid State Chem., 2006, 179, P. 323–330.
33. D´ıaz-Guille´n M.R., Moreno K.J., D´ıaz-Guille´n J.A., Fuentes A.F., Garc´ıa-Barriocanal J., Santamar´ıa J., Leo´n C. Dynamics of mobile oxygen ions in disordered pyrochlore-type oxide-ion conductors. Defect and Diffusion Forum, 2009, 289–292, P. 347–354.
34. D´ıaz-Guille´n J.A., Fuentes A.F., D´ıaz-Guille´n M.R., Almanza J.M., Santamar´ıa J., Leo´n, C. The effect of homovalent A-site substitutions on the ionic conductivity of pyrochlore-type Gd2Zr2O7. J. Power Sources, 2009, 186, P. 349–352.
35. Tuller H.L. Oxygen ion conduction and structural disorder in conductive oxides. J. Phys. Chem. Solids, 1994, 55 (12), P. 1393–1404.
36. Omata T., Otsuka-Yao-Matsuo S. Electrical properties of proton-conducting Ca -doped La2Zr2O7 with a pyrochlore-type structure. J. Electrochem. Soc., 2001, 148 (6), P. 252–261.
37. Omata T., Ikeda K., Tokashiki R., Otsuka-Yao-Matsuo S. Proton solubility for La2Zr2O7 with a pyrochlore structure doped with a series of alkaline-earth ions. Solid State Ion, 2004, 167, P. 389–397.
38. Huo D., Gosset D., Sime´one D., Baldinozzi G., Khodja H., Villeroy B., Surble´ S. Influence of sintering methods on microstructure and ionic conductivity of La1.95Sr0.05Zr2O6.975 synthesized by co-precipitation. Solid State Ion, 2015, 278, P. 181–185.
39. Huo D., Baldinozzi G., Sime´one D., Khodja H., Surble´ S. Grain size-dependent electrical properties of La1.95Sr0.05Zr2O7−δ as potential Proton Ceramic Fuel Cell electrolyte. Solid State Ion, 2016, 298, P. 35–43.
40. Antonova E.P., Ananyev M.V., Farlenkov A.S., Tropin E.S., Khodimchuk A.V., Porotnikova N.M. Phase equilibria, water dissolution, and peculiarities of charge transfer in Ca-doped La2Zr2O7−α. Russ. J. Electrochem., 2017, 53, P. 651–657.
41. Antonova E.P., Farlenkov A.S., Tropin E.S., Eremin V.A., Khodimchuk A.V., Ananyev M.V. Oxygen isotope exchange, water uptake and electrical conductivity of Ca-doped lanthanum zirconate. Solid State Ion, 2017, 306, P. 112–117.
42. Farlenkov A.S., Khodimchuk A.V., Eremin V.A., Tropin E.S., Fetisov A.V., Shevyrev N.A., Leonidov I.I., Ananyev M.V. Oxygen isotope exchange in doped lanthanum zirconates. J. Solid State Chem., 2018, 268, P. 45–54.
43. Vorotnikov V.A., Belyakov S.A., Plekhanov M.S., Stroeva A.Yu., Lesnichyova A.S., Zhigalina O.M., Khmelenin D.N., A` tanova` A.V., Basu V.G., Kuzmin A.V. Proton transfer in La2−xCaxZr2O7−δ pyrochlores: Reasons for limited water uptake and high grain boundary conductivity. Ceram. Int., 2022, 48, P. 35166–35175.
44. Fournier T., Nots J.Y., Muller J., Joubert J.C. Conductive ionique des phases de type pyrochlore Gd2−xCaxZr2O7−x/2 and Gd2Zr2−xScxO7−x/2. Solid State Ion, 1985, 15, P. 71–74.
45. Zhong F., Zhao J., Shi L., Xiao Y., Cai G., Zheng Y., Long J. Alkaline-earth metals-doped pyrochlore Gd2Zr2O7 as oxygen conductors for improved NO2 sensing performance. Sci. Rep., 2017, 7, 4684.
46. Shlyakhtina A.V., Abrantes J.C.C., Gomes E., Lyskov N.V., Konysheva E.Y., Chernyak S.A., Kharitonova E.P., Karyagina O.K., Kolbanev I.V., Shcherbakova L.G. Evolution of Oxygen–Ion and Proton Conductivity in Ca-Doped Ln2Zr2O7 (Ln = Sm, Gd), Located Near Pyrochlore–Fluorite Phase Boundary. Materials, 2019, 12, 2452.
47. Kuzmin A.V., Stroeva A.Yu, Gorelov V.P., Novikova Yu.V., Lesnichyova A.S., Farlenkov A.S., Khodimchuk A.V. Synthesis and characterization of dense proton-conducting La1−xSrxScO3−δ ceramics. Hydrogen Energy, 2019, 44, P. 1130–1138.
48. Jiang L., Wang C., Wang J., Liu F., You R., Lv S., Zeng G., Yang Z., He J., Liu A., et al. Pyrochlore Ca-doped Gd2Zr2O7 solid state electrolyte type sensor coupled with ZnO sensing electrode for sensitive detection of HCHO. Sens. Actuators B Chem., 2020, 309, 127768.
49. Liu Z.G., Ouyang J.H., Zhou Y., Xia X.L. Effect of Sm substitution for Gd on the electrical conductivity of fluorite-type Gd2Zr2O7. J. Power Sources, 2008, 185 (2), P. 876–880.
50. Liu Z., Ouyang J., Sun K., Zhou Y. Effect of CaO addition on the structure and electrical conductivity of the pyrochlore-type GdSmZr2O7. Ceram. Int., 2012, 38, P. 2935–2941.
51. Liu Z.-G., Ouyang J.-H., Sun K.-N., Zhou Y. Influence of magnesia doping on structure and electrical conductivity of pyrochlore type GdSmZr2O7. Adv. Appl. Ceram., 2012, 111, P. 214–219.
52. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A, 1976, 32, P. 751–767.
53. Xia X.-L., Ouyang J.-H., Liu Z.-G. Influence of CaO on structure and electrical conductivity of pyrochlore-type Sm2Zr2O7. J. Power Sources, 2009, 189, P. 888–893.
54. Kovrova A.I., Gorelov V.P. Characteristics of Pt electrode activated by Tb1−xCexO2−α films in contact with ZrO2 + 10 mol % Y2O3 electrolyte. Russ. J. Electrochem., 2019, 55, P. 132–136.
55. Wan T.H., Saccoccio M., Chen C., Ciucci F. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta, 2015, 184, P. 483–499.
56. Gavrilyuk A.L., Osinkin D.A., Bronin D.I. The use of Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy. Russ. J. Electrochem., 2017, 53, P. 575–588.
57. Schlu¨ter N., Ernst S., Schro¨der U. Finding the Optimal Regularization Parameter in Distribution of Relaxation Times Analysis. ChemElectroChem, 2019, 6 (24), P. 6027–6037.
58. Yastrebtsev A.A., Popov V.V., Menushenkov A.P., Beskrovnyi A.I., Neov D.S., Shchetinin I.V., Ponkratov K.V. Comparative neutron and X-ray diffraction analysis of anionic and cationic ordering in rare-earth zirconates (Ln = La, Nd, Tb, Yb, Y). J. Alloys Compd., 2020, 832, 154863.
59. Uno M., Kosuga A., Okui M., Horisaka K., Muta H., Kurosaki K., Yamanaka S. Photoelectrochemical study of lanthanide zirconium oxides, Ln2Zr2O7 (Ln = La, Ce, Nd and Sm). J. Alloys Compd., 2006, 420, P. 291–297.
60. Govindan Kutty, K.V., Rajagopalan, S., Mathews, C.K., Varadaraju, U.V. Thermal expansion behavior of some rare earth oxide pyrochlores. Mater. Res. Bull., 1994, 29 (7), P. 759–766.
61. Shimamura K., Arima T., Idemitsu K., Inagaki Y. Thermophysical Properties of Rare-Earth-Stabilized Zirconia and Zirconate Pyrochlores as Surrogates for Actinide-Doped Zirconia. Int. J. Thermophys., 2007, 28, P. 1074–1084.
62. Liu X.Y., Xu Z.H., Liang G.Y. Comparative study of the sintering behaviors between YSZ and LZ/YSZ composite. Mater. Lett., 2017, 191, P. 108–111.
63. Qu Z., Wan C., Pan W. Thermal expansion and defect chemistry of MgO-doped Sm2Zr2O7. Chem. Mater., 2007, 19, P. 4913–4918.
64. Nikonov A.V., Kuterbekov K.A., Bekmyrza K.Z., Pavzderin N.B. A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode. Eurasian J. Phys. Funct. Mater., 2018, 2 (3), P. 274–292.
65. Eurenius K.E.J., Ahlberg E., Knee C.S. Role of B-site ion on proton conduction in acceptor-doped Sm2B2O7−δ (B = Ti, Sn, Zr and Ce) pyrochlores and C-type compounds. Dalton Trans., 2011, 40, P. 3946–3954.
66. Hagiwara T., Nomura K., Kageyama H. Crystal structure analysis of Ln2Zr2O7 (Ln = Eu and La) with a pyrochlore composition by hightemperature powder X-ray diffraction. J. Ceram. Soc. Jpn., 2017, 125, P. 65–70.
67. Shenu A. Structural Analysis and Its Implications for Oxide ion Conductivity of Lanthanide Zirconate Pyrochlores. PhD Thesis, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK, 2018.
68. Shlyakhtina A.V., Belov D.A., Knotko A.V., Kolbanev I.V., Streletskii A.N., Karyagina O.K., Shcherbakova L.G. Oxygen Interstitial and Vacancy Conduction in Symmetric Ln2±xZr2±xO7±x/2 (Ln = Nd, Sm) Solid Solutions. Inorg. Mater., 2014, 50 (10), P. 1035–1049.
69. Guo X., Maier J. Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis. J. Electrochem. Soc., 2001, 148, E121–E126.
70. Perriot R., Dholabhai P.P., Uberuaga B.P. Disorder-induced transition from grain boundary to bulk dominated ionic diffusion in pyrochlores. Nanoscale, 2017, 9, P. 6826–6836.
Review
For citations:
Vorotnikov V.A., Belyakov S.A., Ivanov A.V., Novikova Yu.V., Stroeva A.Yu., Grebenev V.V., Khmelenin D.N., Emelyanova O.V., Plekhanov M.S., Kuzmin A.V. Equilibrium of intrinsic and impurity point defects in Ca-doped Sm2Zr2O7. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(1):65-79. https://doi.org/10.17586/2220-8054-2024-15-1-65-79