Single-domain particles of manganese-for-iron substituted M-type barium hexaferrite: synthesis, crystal structure, and magnetic properties
https://doi.org/10.17586/2220-8054-2024-15-1-80-97
Abstract
Single-phase barium hexaferrite powders with crystallite sizes in a single-domain region and with the general composition BaFe12−xMnxO19, where x = 0, 2, 4, 6, were synthesized applying a citric sol-gel auto-combustion technique with final annealing temperatures of 900 – 1200 ◦C. The crystal structures were refined, and the magnetic properties were studied. The observed variations in atomic positions with the Mnfor-Fe substitution revealed presence of Mn in three oxidation state +2, +3, and +4, with a preference of Mn2+ to the tetrahedral 4f1 site and Mn4+ to the octahedral 2a and 12k sites. With the Mn-doping, the samples’ magnetization decreased, while coercivity increased and reached 8.4 kOe for x = 6. The rise of the annealing temperature resulted in a slight growth of magnetization with a general tendency of the coercivity to decrease. A Curie temperature decreased with the Mn-doping remaining above room temperature for the maximal doping.
About the Authors
P. E. KazinRussian Federation
Pavel E. Kazin - Department of Chemistry
Moscow
A. E. Sleptsova
Germany
Anastasia E. Sleptsova
Heisenbergstrasse 1, 70569 Stuttgart
A. V. Vasiliev
Russian Federation
Alexander V. Vasiliev - Department of Chemistry
Moscow
A. A. Eliseev
Russian Federation
Artem A. Eliseev - Department of Chemistry
Moscow
R. E. Dinnebier
Germany
Robert E. Dinnebier
Heisenbergstrasse 1, 70569 Stuttgart
S. Bette
Germany
Sebastian Bette
Heisenbergstrasse 1, 70569 Stuttgart
References
1. Buschow K.H.J., de Boer F.R. Physics of Magnetism and Magnetic Materials, Kluwer Academic/Plenum Publishers, New York, 2003, 182 p.
2. Harris V.G., Geiler A., Chen Y., Yoon S. D., Wu M., Yang A., Chen Z., He P., Parimi P. V., Zuo X., Patton C.E., Abe M., Acher O., Vittoria C. Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater., 2009, 321, P. 2035–2047.
3. Shimizu O., Oyanagi M., Morooka A., Mori M., Kurihashi Y., Tada T., Suzuki H., Harasawa T. Development of advanced barium ferrite tape media. J. Magn. Magn. Mater., 2016, 400, P. 365–369.
4. Pullar R.C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci., 2012, 57, P. 1191–1334.
5. Banihashemi V., Ghazi M.E., Izadifard M., Dinnebier R.E. A study of Ca-doped hexaferrite Sr1−xCaxFe12O19 (x = 0.0, 0.05, 0.1, 0.15, and 0.2) synthesized by sol-gel combustion method. Phys. Scr., 2020, 95, 095807.
6. Trusov L.A., Gorbachev E.A., Lebedev V.A., Sleptsova A.E., Roslyakov I.V., Kozlyakova E.S., Vasiliev A.V., Dinnebier R.E., Jansen M., Kazin P.E. Ca-Al double-substituted strontium hexaferrites with giant coercivity. Chem. Commun., 2018, 54, P. 479–482.
7. Gorbachev E.A., Trusov L.A., Sleptsova A.E., Kozlyakova E.S., Alyabyeva L.N., Yegiyan S.R., Prokhorov A.S., Lebedev V.A., Roslyakov I.V., Vasiliev A.V., Kazin P.E. Hexaferrite materials displaying ultra-high coercivity and sub-terahertz ferromagnetic resonance frequencies. Mater. Today, 2020, 32, P. 13–18.
8. Obradors X., Collomb A., Pernet M., Jourbert J.C. Structural and magnetic properties of BaFe12−xMnxO19 hexagonal ferrites. J. Magn. Magn Mater., 1984, 44, P. 118–128.
9. Collomb A., Obradors X., Isalgue´ A., Fruchart D. Neutron diffraction study of the crystallographic and magnetic structures of the BaFe12−xMnxO19 M-type hexagonal ferrites. J. Magn. Magn Mater., 1987, 69, P. 317–324.
10. Thang P.D., Ho T.A., Dang N.T., Lee B.W., Phan T.L., Manh T.V., Kim D.H., Yang D.S. Mn-doped (Ba,Y)Fe12O19 hexaferrites: Crystal structure and oxidation states of Mn and Fe. Current Applied Physics, 2020, 20, P. 1263–1267.
11. Okube M., Yoshizaki J., Toyoda T., Sasaki S. Cation distribution and magnetic structure of M-type BaTiMnFe10O19 examined by synchrotron X-ray and neutron studies. J. Appl. Cryst., 2016, 49, P. 1433–1442.
12. Adeela N., Khan U., Iqbal M., Riaz S., Ali H., Maaz K., Naseem S. Magnetic and dielectric investigations of Mn-doped Ba hexaferrite nanoparticles by hydrothermal approach. J. Electronic Materials, 2016, 45, P. 5853–5859.
13. Kim M., Lee H., Kim J. Magnetic properties of Mn substituted strontium ferrite powders synthesized by the molten salt method. AIP Advances, 2020, 10, 015325.
14. Trusov L.A., Gorbachev E.A., Lebedev V.A., Sleptsova A.E., Roslyakov I.V., Kozlyakova E.S., Vasiliev A.V., Dinnebier R.E., Jansen M., Kazin P.E. Ca–Al double-substituted strontium hexaferrites with giant coercivity. Chem. Commun., 2018, 54, P. 479–482.
15. Petˇr´ıcˇek V., Dusˇek M., Palatinus L. Crystallographic Computing System JANA2006: General features. Z. Kristallogr.-Cryst. Mater., 2014, 229, P. 345–352.
16. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A, 1976, 32, P. 751–767.
17. Xu Y., Yang G.-L., Chu D.-P., Zhai H.-R. Theory of the single ion magnetocrystalline anisotropy of 3d ions. Phys. Stat. Sol. B, 1990, 157, P. 685–693.
18. Schilder H., Lueken H. Computerized magnetic studies on d, f, d–d, f–f, and d–S; f–S systems under varying ligand and magnetic fields. J. Magn. Magn. Mater., 2004, 281, P. 17–26.
19. Tenorio-Gonza´lez F.N., Bolar´ın-Miro´ A.M., Sa´nchez-De Jesu´s F., Vera-Serna P., Mene´ndez-Gonza´lez N., Sa´nchez-Marcos J. Crystal structure and magnetic properties of high Mn-doped strontium hexaferrite. J. Alloys Compd., 2017, 695, P. 2083–2090.
Review
For citations:
Kazin P.E., Sleptsova A.E., Vasiliev A.V., Eliseev A.A., Dinnebier R.E., Bette S. Single-domain particles of manganese-for-iron substituted M-type barium hexaferrite: synthesis, crystal structure, and magnetic properties. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(1):80-97. https://doi.org/10.17586/2220-8054-2024-15-1-80-97