Tunneling recombination in GaN/InGaN LEDs with a single quantum well
https://doi.org/10.17586/2220-8054-2024-15-2-204-214
Abstract
The paper proposes an analytical model of tunneling-recombination processes with forward and reverse displacements in InGaN/GaN-based structures containing a quantum well, assuming that the processes of generation and recombination are complex, while one of the stages of the transition of the charge carrier to the center is tunneling. Comparing the model with the experiment allowed us to determine the energies of the recombination centers of 0.22 and 0.45 eV. These energies may correspond to centers formed by defect complexes along filamentous dislocations, such as divacansions (VGa VN ), and a point isolated defect observed in n-type GaN layers grown by various methods, respectively.
About the Authors
S. V. BulyarskyRussian Federation
Sergey V. Bulyarsky.
Leninskiy prospect, 32A, Moscow 119991
L. N. Vostretsova
Russian Federation
Liubov N. Vostretsova.
Tolstoy street, 42, Ulyanovsk 432097
V. A. Ribenek
Russian Federation
Valeriya A. Ribenek.
Tolstoy street, 42, Ulyanovsk 432097
References
1. DenBaars S.P. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Materialia, 2013, 61, P. 945–951.
2. Huang Y., Hsiang E.-L., Deng M.-Y., Wu S.-T. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light: Science & Applications, 2020, 9, 105.
3. Parbrook P.J., Corbett B., Han J., Seong T.-Y., Amano H. Micro-Light Emitting Diode: From Chips to Applications. Laser & Photonics Reviews, 2021, 15, 2000133
4. Lee S.-L., Cheng C.-C., Liu C.-J., Yeh C.-N., Lin Y.-C. 9.4-inch 228-ppi flexible micro-LED display. J. of Society for Information Display, 2021, 29, P. 360–369.
5. Shi J.W., Chi K.L., Wun J.M., Bowers J.E., Sheu J.K. GaN based Cyan light-emitting diodes with GHz bandwidth. IEEE Photonics Conf. IPC, IEEE, Piscataway, NJ, 2016, P. 623–624.
6. Pepe A., Chen C.-J., Fu H.Y., Chen K.-C., Wang L., Wang L., Zhang L., Wu M.-C., Liu X., Luo Y., Dong Y., Wei Z., Wang L., Luo Y., Fu H.Y. 2 Gbps/3 m air–underwater optical wireless communication based on a single-layer quantum dot blue micro-LED. Optics Letters, 2020, 45, P. 2616–2619.
7. Kou J., Shen Ch.-Ch., Shao H. Impact of the surface recombination on InGaN”/ GaN-based blue micro-light emitting diodes. Optics Express, 2019, 27 (12), A643–A653 .
8. Wu T., Sher C.-W., Lin Y., Lee C.-F., Liang S., Lu Y., Huang Chen S.-W., Guo W., Kuo H.-C., Chen Z. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Applied Sciences, 2018, 8 (9), 1557.
9. Zhang K., Peng D., Chong W.C., Lau K.M., Liu Z. Investigation of Photon-Generated Leakage Current for High-Performance Active Matrix Micro-LED Displays. IEEE Transactions on Electron Devices, 2016, 63 (12), P. 4832–4838.
10. Liu Z., Chong W.C., Wong K.M., Lau K.M. GaN-based LED micro-displays for wearable applications. Microelectronic Engineering, 2015, 148, P. 98–103.
11. David A., Young N.G., Lund C., Craven M.D. Review—The Physics of Recombinations in III-Nitride Emitters. ECS J. of Solid State Science and Technology, 2020, 9 (1), 016021.
12. Seong T.-Y., Han J., Amano H., Morkoc¸ H. III-Nitride Based Light Emitting Diodes and Applications. Springer Nature Singapore Pte Ltd XI, 2017, 495.
13. Gong Z., Gaevski M., Adivarahan V., Sun W., Shatalov M., Asif Khan M. Optical power degradation mechanisms in AlGaN-based 280 nm deep ultraviolet light-emitting diodes on sapphire. Applied Physics Letters, 2006, 88, 121106
14. Pinos A., Marcinkevicius S., Shur M.S. High current-induced degradation of AlGaN ultraviolet light emitting diodes. J. Appl. Phys., 2011, 109, 103108.
15. Meneghini M., Barbisan D., Bilenko Y., Shatalov M., Yang J., Gaska R., Meneghesso G., Zanoni E. Defect-related degradation of Deep-UV-LEDs. Microelectronics Reliability, 2010, 50, 1538.
16. Dalapati P., Yamamoto K., Egawa T., Miyoshi M. Impact of current-induced degradation process on the electro-optical characteristics of In- GaN/GaN multiple-quantum-well photodetectors fabricated on sapphire substrate. Applied Physics Letters, 2021, 118, 021101.
17. Bochkareva N.I., Shreter Y.G. Effect of Deep Centers on Charge-Carrier Confinement in InGaN/GaN Quantum Wells and on LED Efficiency. Semiconductors, 2018, 52 (7), P. 934–941.
18. Bochkareva N.I., Rebane Y.T., Shreter Y.G. Efficiency Droop in GaN LEDs at High Current Densities: Tunneling Leakage Currents and Incomplete Lateral Carrier Localization in InGaN/GaN Quantum Wells. Semiconductors, 2014, 48 (8), P. 1079–1087.
19. Bulyarsky S.V., Rud’ Yu.V., Vostretsova L.N., Kagarmanov A.S., Trifonov O.Yu. Tunneling recombination in semiconductor structures with nanodisordering. Semiconductors, 2009, 43 (4), P. 440–446.
20. Bulyarskiy S.V. Generation and Recombination Processes in Disordered Semiconductor Structures with Deep Centers. Global J. of Science Frontier Research: A Physics and Space Science, 2020, 20 (13).
21. Bulyarskiy S.V. The effect of electron-phonon interaction on the formation of reverse currents of pn-junctions of silicon-based power semiconduc tor devices. Solid State Electronics, 2019, 160, 107624
22. Bulyarskiy S.V., Lakalin A.V., Abanin I.E., Amelichev V.V., Svetuhin V.V. Optimization of the parameters of power sources excited by β-radiation. Semiconductors, 2017, 51 (1), P. 66–72.
23. Shockley W. The theory of pn-Junctions in semiconductors and pn-Junction transistors. Bell System Technical J., 1949, 28 (3), P. 435–489.
24. Sah C.T., Noyce R.N., Shockley W. Carrier Generation and Recombination in PN Junctions and PN Junction Characteristics. Proceedings of the IRE, 1957, 45 (9), P. 1228–1243.
25. Rein S., Rehrl T., Warta W., Glunz S.W. Lifetime spectroscopy for defect characterization: Systematic analysis of the possibilities and restrictions. J. of Applied Physics, 2002, 91, P. 2059–2070.
26. Simoen E., Claeys C., Vanhellemont J. Defect Analysis in Semiconductor Materials Based on pn Junction Diode Characteristics. Defect and Diffusion Forum, 2007, 261–262, P. 1–24.
27. Simoen E., Claeys C. On the impact of the capture rates on the generation/recombination lifetime ratio of a single deep level. IEEE Transactions on Electron Devices, 1999, 46, P. 1487–1488.
28. Macdonald D., Cuevas A. Validity of simplified Shockley-Read-Hall statistics for modeling carrier lifetimes in crystalline silicon. Physical Review B, 2003, 67, 075203.
29. Al Abdullah K., Al Alloush F., Jaafar A., Salame C. Study of the effects related to the electric reverse stress currents on the Mono-Si solar cell electrical parameters. Energy Procedia, 2013, 36, P. 104–113.
30. Shan Q., Meyaard D.S., Dai Q., Cho J., Fred Schubert E., Kon Son J., Sone C. Transport-mechanism analysis of the reverse leakage current in GaInN light-emitting diodes. Applied Physics Letters, 2011, 99, 253506.
31. Musolino M., van Treeck D., Tahraoui A., Scarparo L., De Santi C., Meneghini M., Zanoni E., Geelhaar L., Riechert H. A physical model for the reverse leakage current in (In,Ga)N/GaN light-emitting diodes based on nanowires. J. of Applied Physics, 2016, 119 (4), 044502.
32. Timashev S.F. On the Frenkel effect during thermofield ionization of deep centers in the space charge layer in semiconductors. Phys Solid State, 1974, 16, P. 804–811.
33. Rickert K.A., Ellis A.B., Kim J.K., Lee J.-L., Himpsel F.J., Dwikusuma F., Kuech T.F. X-ray photoemission determination of the Schottky barrier height of metal contacts to n-GaN and p-GaN. J. of Applied Physics, 2002, 92 (11), 6671.
34. Narita T., Tokuda Y. Deep levels in GaN. in T. Narita, T. Kachi, (eds.), Characterization of Defects and Deep Levels for GaN Power Devices, Melville, New York: AIP Publishing, 2020, P. 3-1–3-36.
35. Krtschil A., Witte H., Lisker M., Christen J., Krost A., Birkle U., Einfeldt S., Hommel D., Scholz F., Off J., Stutzmann M. Photoelectric properties of the 0.44 eV deep level-to-band transition in gallium nitride investigate by optical admittance spectroscopy. Applied Physics Letters, 2000, 77 (4), 546.
Review
For citations:
Bulyarsky S.V., Vostretsova L.N., Ribenek V.A. Tunneling recombination in GaN/InGaN LEDs with a single quantum well. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(2):204-214. https://doi.org/10.17586/2220-8054-2024-15-2-204-214