Fluorination of Eu-doped layered yttrium hydroxides: the role of anionic composition
https://doi.org/10.17586/2220-8054-2024-15-1-104-114
Abstract
The fluorination processes of layered rare-earth hydroxides (LRHs) intercalated with various anions, including organic ones, have been compared for the first time. The fluorination process was investigated for chloride-, nitrateand 4-sulfobenzoate-intercalated Eu-doped layered yttrium hydroxides by interaction with aqueous solutions of sodium fluoride at 100–150 ○C for 2–48 hours. The final product of fluorination in all cases is the hexagonal yttrium hydroxide fluoride (YHF) phase of NayY0.95Eu0.05(OH)3+y−xFx · mH2O (x ∼ 3, y ∼ 0.2) composition. The formation rate of the YHF increases with the interlayer spacing of the Eu-doped layered yttrium hydroxide.
Keywords
About the Authors
Zh. LiuRussian Federation
Zhanbo Liu
Shenzhen, PRC
S. V. Golodukhina
Russian Federation
Svetlana V. Golodukhina
Moscow
S. V. Kameneva
Russian Federation
Svetlana V. Kameneva
Shenzhen, PRC
A. D. Yapryntsev
Russian Federation
Alexey D. Yapryntsev
Moscow
References
1. Yao X., Wang R., Zhao J., Liu F., Jin Z., Wang Z., Wang F., Liu J., Wu. L. An overview of metal hydroxyfluoride–A novel semiconductor material ChemPhysMater, 2023, P. S2772571523000359.
2. Serna-Galle´n P., Beltra´n-Mir H., Cordoncillo E. The pH-dependent reactions in the sonochemical synthesis of luminescent fluorides: The quest for the formation of KY3F10 crystal phases. Ultrason. Sonochem., 2022, 87, P. 106059.
3. Zhu L.-L., Liu B.-Q., Chen X.-Y., Feng A., Zhang Z.-J., Zhao J.-T. Synthesis, characterization and luminescence properties of NaY(OH)xF4−x : Sm with spindle shape. Mater. Res. Bull., 2015, 68, P. 289–294.
4. Xu J., Zhu T., Chen X., Zhao D., Li Y., Zhang L., Bi N., Gou J., Jia L. Tri-channel tubular lanthanide nanocomposites for multimodal anticounterfeiting. J. Lumin., 2023, 256, P. 119647.
5. Lima E., Pfeiffer H., Flores J. Some consequences of the fluorination of brucite-like layers in layered double hydroxides: Adsorption. Appl. Clay Sci. 2014, 88-89, P. 26–32.
6. Booster J.L., Van Sandwijk A., Reuter M.A. Conversion of magnesium fluoride to magnesium hydroxide. Miner. Eng., 2003, 16(3), P. 273–281.
7. Timofeeva E., Orlovskaya E., Popov A., Shaidulin A., Kuznetsov S., Alexandrov A., Uvarov O., Vainer Y., Silaev G., Ra¨hn M., Tamm A., Fedorenko S., Orlovskii Y. The Influence of Medium on Fluorescence Quenching of Colloidal Solutions of the Nd3+: LaF3 Nanoparticles Prepared with HTMW Treatment. Nanomaterials, 2022, 12(21), P. 3749.
8. F. Ga´ndara, J. Perles, N. Snejko, M. Iglesias, B. Go´mez-Lor, E. Gutie´rrez-Puebla, M.A´ . Monge. Layered Rare-Earth Hydroxides: A Class of Pillared Crystalline Compounds for Intercalation Chemistry. Angew. Chem. Int. Ed., 2006, 45(47), P. 7998–8001.
9. Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. Layered rare-earth hydroxides: a new family of anion-exchangeable layered inorganic materials. Russ. Chem. Rev., 2020, 89(6), P. 629–666.
10. Zhang H., Chen T., Qin S., Huang J., Wu X. Fabrication of REVO 4 films via sacrificial conversion from layered rare-earth hydroxide (LRH) films: the investigation of the transition mechanism and their photoluminescence. Dalton Trans, 2022, 51(14), P. 5577–5586.
11. Wang X., Sun M., Hu Z., Du P., Liu W., Zhang F., Li J.-G. Synthesis of NaLn(WO4)2 phosphors via a new phase-conversion protocol and investigation of up/down conversion photoluminescence. Adv. Powder Technol., 2020, 31(10), P. 4231–4240.
12. Wang Z., Li J.-G.G., Zhu Q., Li X., Sun X. Sacrificial conversion of layered rare-earth hydroxide (LRH) nanosheets into (Y1−xEux)PO4 nanophosphors and investigation of photoluminescence. Dalton Trans, 2016, 45(12), P. 5290–5299.
13. Wang Z., Li J.-G., Zhu Q., Li X., Sun X. Hydrothermal conversion of layered hydroxide nanosheets into (Y0.95Eu0.05)PO4 and (Y0.96−xTb0.04Eux)PO4 (x = 0–0.10) nanocrystals for red and color-tailorable emission. RSC Adv., 2016, 6(27), P. 22690–22699.
14. Li J., Li J.-G., Zhu Q., Sun X. Room-temperature fluorination of layered rare-earth hydroxide nanosheets leading to fluoride nanocrystals and elucidation of down-/up-conversion photoluminescence. Mater. Des., 2016, 112, P. 207–216.
15. Feng Y., Shao B., Song Y., Zhao S., Huo J., Lu¨ W., You H. Fast synthesis of β-NaYF4 : Ln3+ (Ln = Yb/Er, Yb/Tm) upconversion nanocrystals via a topotactic transformation route. CrystEngComm., 2016, 18(39), P. 7601–7606.
16. Xu Z., Tang G., Meng W., Feng H., Zhang Z., Zhao J. Controlled synthesis of hydrophilic yttrium-based fluorids by transformation from layered rare-earth hydroxides. Opt. Mater. Elsevier B.V., 2020, 108(May), P. 110220.
17. Shao B., Zhao Q., Lv W., Jiao M., Lu¨ W., You H. Novel Two-step topotactic transformation synthetic route towards monodisperse LnOF: Re,3+ (Ln = Y, Pr-Lu) Nanocrystals with down/upconversion luminescence properties. Adv. Opt. Mater., 2015, 3(4), P. 583–592.
18. Omwoma S., Stephen Odongo A., Otieno Z., Lagat S., Lalah J.O. Layered Rare-Earth Hydroxide Unilameller Nanosheets: Synthesis, Characterization, and Adsorption. J. Chem., 2020, 2020, P. 8923871.
19. Liu S., Li J.G., Liu W., Cui H., Liu M., Chen J., Zhu H., Li X., Sun X. A novel method for improving particle growth and photoluminescence through Fsubstituting for gallery NO in layered Y/Eu hydroxides. Chem. Eng. J. Elsevier, 2020, 380, P. 122618.
20. Wu X., Li J.-G.J.G.J.-G.J.G., Zhu Q., Liu W., Li J.-G.J.G.J.-G.J.G., Li X., Sun X., Sakka Y. One-step freezing temperature crystallization of layered rare-earth hydroxide (Ln(2)(OH)(5)NO(3 center dot)nH(2)O) nanosheets for a wide spectrum of Ln (Ln = Pr-Er, and Y), anion exchange with fluorine and sulfate, and microscopic coordination probed via. J. Mater. Chem. C., 2015, 3(14), P. 3428–3437.
21. Wang X., Hu Z., Sun M., Du P., Liu W., Huang S., Li J.G. Phase-conversion synthesis of LaF3:Yb/RE (RE = Ho, Er) nanocrystals with Ln2(OH)4SO4 · 2H2O type layered compound as a new template, phase/morphology evolution, and upconversion luminescence. J. Mater. Res. Technol. Korea Institute of Oriental Medicine, 2020, 9(5), P. 10659–10668.
22. Dong J., Wang X., Xiong H., Song H., Wu R., Gan S. A novel synthetic route towards monodisperse yttrium hydroxide fluoride by anion exchange and luminescence properties. Opt. Laser Technol., 2019, 111, P. 372–379.
23. Li J., Wang X., Zhu Q., Kim B.-N., Sun X., Li J.-G. Interacting layered hydroxide nanosheets with KF leading to Y/Eu hydroxyfluoride, oxyfluoride, and complex fluoride nanocrystals and investigation of photoluminescence. RSC Adv., 2017, 7(83), P. 53032–53042.
24. Liu B.-Q., Guo K., Wang J., Zhang Z.-J., Tao Y., Huang Y., Zhao J.-T. Mild hydrothermal synthesis and photoluminescence of needle-like Y(OH)1.1F1.9:Tb3+. Mater. Lett., 2013, 100, P. 245–247.
25. Geng F. et al. New layered rare-earth hydroxides with anion-exchange properties. Chem. Eur. J., 2008, 14(30), P. 9255–9260.
26. Geng F., Matsushita Y., Ma R., Xin H., Tanaka M., Izumi F., Iyi N., Sasaki T. General synthesis and structural evolution of a layered family of Ln8(OH)20Cl4 · nH2O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y). J. Am. Chem. Soc., 2008, 130(48), P. 16344–16350.
27. Geng F., Matsushita Y., Ma R., Xin H., Tanaka M., Iyi N., Sasaki T., Renzhi M., Xin H., Tanaka M., Lyi N., Sasaki T., Ma R., Xin H., Tanaka M., Iyi N., Sasaki T. Synthesis and properties of well-crystallized layered rare-earth hydroxide nitrates from homogeneous precipitation. Inorg. Chem., 2009, 48(14), P. 6724–6730.
28. Yapryntsev A., Abdusatorov B., Yakushev I., Svetogorov R., Gavrikov A., Rodina A., Fatyushina Y., Baranchikov A., Zubavichus Y., Ivanov V. Eu-Doped layered yttrium hydroxides sensitized by a series of benzenedicarboxylate and sulphobenzoate anions. Dalton Trans., 2019, 48(18).
29. Marcus Y. Ionic radii in aqueous solutions. Chem. Rev., 1988, 88(8), P. 1475–1498.
30. Nishizawa H., Okumoto K., Mitsushio T. Preparation and thermal decomposition of yttrium hydroxide fluorides. J. Solid State Chem., 1991, 92(2), P. 370–379.
31. Grzechnik A., Bouvier P., Mezouar M., Mathews M.D., Tyagi A.K., Ko¨hler J. Hexagonal Na1.5Y1.5F6 at High Pressures. J. Solid State Chem., 2002, 165(1), P. 159–164.
32. Fedorov P., Mayakova M., Voronov V., Baranchikov A., Ivanov V. Preparation of “NaREF4” phases from the sodium nitrate melt. J. Fluor. Chem., 2019, 218, P. 69–75.
33. Kra¨mer K.W., Biner D., Frei G., Gu¨del H.U., Hehlen M.P., Lu¨thi S.R. Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors. Chem. Mater., 2004, 16(7), P. 1244–1251.
34. He X., Yan B. Yttrium hydroxide fluoride based monodisperse mesocrystals: additive-free synthesis, enhanced fluorescence properties, and potential applications in temperature sensing. CrystEngComm., 2015, 17(3), P. 621–627.
35. Wan S., Qi J., Zhang W., Wang W., Zhang S., Liu K., Zheng H., Sun J., Wang S., Cao R. Hierarchical Co(OH)F Superstructure Built by LowDimensional Substructures for Electrocatalytic Water Oxidation. Adv. Mater., 2017, 29(28), P. 1700286.
36. Klevtsov P.V., Bembel’ V.M., Grankina Z.A. Crystalline hydroxychlorides, Ln(OH)2Cl, of the rare-earth elements of the cerium group. J. Struct. Chem., 1970, 10(4), P. 543–547.
37. Nakamoto K. Applications in Coordination Chemistry. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, Inc., 2008, P. 1–273.
38. Utochnikova V.V. The use of luminescent spectroscopy to obtain information about the composition and the structure of lanthanide coordination compounds. Coord. Chem. Rev., 2019, 398, P. 113006.
39. Binnemans K. Interpretation of europium(III) spectra. Coord. Chem. Rev., 2015, 295, P. 1–45.
40. Zhuang J., Yang X., Fu J., Liang C., Wu M., Wang J., Su Q. Monodispersed β-NaYF4 Mesocrystals: In Situ Ion Exchange and Multicolor Upand Down-Conversions. Cryst. Growth Des., 2013, 13(6), P. 2292–2297.
Review
For citations:
Liu Zh., Golodukhina S.V., Kameneva S.V., Yapryntsev A.D. Fluorination of Eu-doped layered yttrium hydroxides: the role of anionic composition. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(1):104-114. https://doi.org/10.17586/2220-8054-2024-15-1-104-114